OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: 3762–3767

Fluorescence detection of atmospheric nitrogen dioxide using a blue light-emitting diode as an excitation source

Yutaka Matsumi, Fumikazu Taketani, Kenshi Takahashi, Tomoki Nakayama, Megumi Kawai, and Yuka Miyao  »View Author Affiliations


Applied Optics, Vol. 49, Issue 19, pp. 3762-3767 (2010)
http://dx.doi.org/10.1364/AO.49.003762


View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the development of a low-cost and compact instrument for quantifying atmospheric NO 2 concentrations by detecting NO 2 fluorescence using a commercial light-emitting diode around 435 nm as a fluorescence excitation light source. The minimum detectable limit of the NO 2 instrument developed has been estimated to be 9.8 parts per billion of volume mixing ratio (ppbv) in a 60 s integration time and with a signal-to-noise ratio of 2.

© 2010 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.7030) Atmospheric and oceanic optics : Troposphere
(230.3670) Optical devices : Light-emitting diodes
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 10, 2010
Revised Manuscript: May 30, 2010
Manuscript Accepted: June 3, 2010
Published: June 28, 2010

Citation
Yutaka Matsumi, Fumikazu Taketani, Kenshi Takahashi, Tomoki Nakayama, Megumi Kawai, and Yuka Miyao, "Fluorescence detection of atmospheric nitrogen dioxide using a blue light-emitting diode as an excitation source," Appl. Opt. 49, 3762-3767 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-19-3762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Finlayson-Pitts and J. N. Pitts, Jr., Chemistry of the Upper and Lower Atmosphere (Academic, 2000).
  2. E. J. Dunlea , S. C. Herndon , D. D. Nelson , R. M. Volkamer , F. San Martini , P. M. Sheehy , M. S. Zahniser , J. H. Shorter , J. C. Wormhoudt , B. K. Lamb , E. J. Allwine , J. S. Gaffney , N. A. Marley , M. Grutter , C. Marquez , S. Blanco , B. Cardenas , A. Retama , C. R. Ramos Villegas , C. E. Kolb , L. T. Molina , and M. Molina , “Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment,” Atmos. Chem. Phys. 7, 2691-2704 (2007). [CrossRef]
  3. J. Reid , M. El-Sherbiny , B. K. Garside , and E. A. Ballik , “Sensitivity limits of a tunable diode-laser spectrometer with application to the detection of NO2 at the 100ppt level,” Appl. Opt. 19, 3349-3354 (1980). [CrossRef] [PubMed]
  4. W. Lenth and M. Gehrtz , “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263-1265 (1985). [CrossRef]
  5. M. G. Allen , K. L. Carleton , S. J. Davis , W. J. Kessler , C. E. Otis , D. A. Palombo , and D. M. Sonnenfroh , “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240-3249 (1995). [CrossRef] [PubMed]
  6. L. Gianfrani , G. Gagliardi , G. Pesce , and A. Sasso , “High-sensitivity detection of NO2 using a 740nm semiconductor diode laser,” Appl. Phys. B 64, 487-491 (1997). [CrossRef]
  7. D. M. Sonnenfroh and M. G. Allen , “Ultrasensitive, visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053-4058(1996). [CrossRef] [PubMed]
  8. R. M. Mihalcea , D. S. Baer , and R. K. Hanson , “Tunable diode-laser absorption measurements of NO2 near 670 and 395nm,” Appl. Opt. 35, 4059-4064 (1996). [CrossRef] [PubMed]
  9. J. T. C. Liu , R. K. Hanson , and J. B. Jeffries , “High-sensitivity absorption diagnostic for NO2 using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655-664 (2002). [CrossRef]
  10. V. L. Kasyutich , C. S. E. Bale , C. E. Canosa-Mas , C. Perfang , S. Vaughan , and R. P. Wayne , “Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode,” Appl. Phys. B 76, 691-697 (2003).
  11. R. Wada and A. J. Orr-Ewing , “Continuous wave cavity-ring down spectroscopy measurement of NO2 mixing ratios in ambient air,” Analyst (Amsterdam) 130, 1595-1600 (2005).
  12. T. Gherman , D. S. Venables , S. Vaughan , J. Orphal , and A. A. Ruth , “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008). [CrossRef] [PubMed]
  13. H. D. Osthoff , S. S. Brown , T. B. Ryerson , T. J. Fortin , B. M. Lerner , E. J. Williams , A. Pettersson , T. Baynard , W. P. Dubé , S. J. Ciciora , and A. R. Ravishankara , “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. 111, D12305 (2006), doi:10.1029/2005JD006942. [CrossRef]
  14. M. Triki , P. Cermak , G. Méjean , and D. Romanini , “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91, 195-201 (2008). [CrossRef]
  15. V. Slezak , G. Santiago , and A. L. Peuriot , “Photoacoustic detection of NO2 traces with CW and pulsed green lasers,” Opt. Lasers Eng. 40, 33-41 (2003). [CrossRef]
  16. C. Fong and W. H. Brune , “A laser induced fluorescence instrument for measuring tropospheric NO2,” Rev. Sci. Instrum. 68, 4253-4262 (1997). [CrossRef]
  17. J. A. Thornton , P. J. Wooldridge , and R. C. Cohen , “Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios,” Anal. Chem. 72, 528-539 (2000). [CrossRef] [PubMed]
  18. Y. Matsumi , S. Murakami , M. Kono , K. Takahashi , M. Koike , and Y. Kondo , “High-sensitivity instrument for measuring atmospheric NO2,” Anal. Chem. 73, 5485-5493 (2001). [CrossRef]
  19. J. Matsumoto and Y. Kajii , “Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique,” Atmos. Environ. 37, 4847-4851 (2003). [CrossRef]
  20. C. Dari-Salisburgo , P. Di Carlo , F. Giammaria , Y. Kajii , and A. D'Altorio , “Laser induced fluorescence instrument for NO2 measurements: Observations at a central Italy background site,” Atmos. Environ. 43, 970-977 (2009). [CrossRef]
  21. P. A. Cleary , P. J. Wooldridge , and R. C. Cohen , “Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion,” Appl. Opt. 41, 6950-6956 (2002). [CrossRef] [PubMed]
  22. F. Taketani , M. Kawai , K. Takahashi , and Y. Matsumi , “Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser,” Appl. Opt. 46, 907-915 (2007). [CrossRef] [PubMed]
  23. G. J. Fetzer , L. Miao , J. L. A. Chilla , J. M. Pikal , and C. S. Menoni , “NO2 photometer based on solid-state light sources,” Appl. Opt. 37, 5590-5595 (1998). [CrossRef]
  24. P. L. Kebabian , S. C. Herndon , and A. Freedman , “Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy,” Anal. Chem. 77, 724-728 (2005). [CrossRef] [PubMed]
  25. G. D. Santiago , M. G. González , A. L. Peuriot , F. González , and Verónica B. Slezak , “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006). [CrossRef]
  26. J. M. Langridge , S. M. Ball , and R. L. Jones , “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Amsterdam) 131, 916-922 (2006).
  27. T. Wu , W. Zhao , W. Chen , W. Zhang , and X. Gao , “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85-94 (2009). [CrossRef]
  28. A. C. Vandaele , C. Hermans , S. Fally , M. Carleer , R. Colin , M.-F. Mérienne , A. Jenourier , and B. Coquart , “High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: temperature and pressure effects,” J. Geophys. Res. 107, 4348 (2002), doi:10.1029/2001JD000971. [CrossRef]
  29. J. Orphal , “A critical review of the absorption cross-sections of O3 and NO2 in the ultraviolet and visible,” J. Photochem. Photobiol. A 157, 185-209 (2003). [CrossRef]
  30. K. O. Patten, Jr., J. D. Burley , and H. S. Johnston , “Radiative lifetimes of nitrogen dioxide for excitation wavelengths from 400 to 750nm,” J. Phys. Chem. 94, 7960-7969 (1990). [CrossRef]
  31. V. M. Donnelly , D. G. Keil , and F. Kausman , “Fluorescence lifetime studies of NO2. III. Mechanism of fluorescence quenching,” J. Chem. Phys. 71, 659-673 (1979). [CrossRef]
  32. R. Atkinson , D. L. Baulch , R. A. Cox , J. N. Crowley , R. F. Hampson , R. G. Hynes , M. E. Jenkin , M. J. Rossi , and J. Troe , “Evaluated kinetic and photochemical data for atmospheric chemistry: volume I--gas phase reactions of Ox, HOx, NOx and SOx species,” Atmos. Chem. Phys. 4, 1461-1738(2004). [CrossRef]
  33. S. P. Sander , R. R. Friedl , D. M. Golden , M. J. Kurylo , G. K. Moortgat , H. Keller-Rudek , P. H. Wine , A. R. Ravishankara , C. E. Kolb , M. J. Molina , B. J. Finlayson-Pitts , R. E. Huie , and V. L. Orkin , “Chemical kinetics and photochemical data for use in atmospheric studies,” Evaluation No. 15, JPL Publication 06-2 (JPL, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited