OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: 3798–3813

Compression of infrared imagery sequences containing a slow-moving point target

Revital Huber-Shalem, Ofer Hadar, Stanley R. Rotman, and Merav Huber-Lerner  »View Author Affiliations


Applied Optics, Vol. 49, Issue 19, pp. 3798-3813 (2010)
http://dx.doi.org/10.1364/AO.49.003798


View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Infrared imagery sequences are used for detecting moving targets in the presence of evolving cloud clutter or background noise. This research concentrates on slow-moving point targets that are less than one pixel in size, such as aircraft at long ranges from a sensor. The infrared (IR) imagery sequences that are captured by ground sensors contain an enormous amount of data. Since transmitting this data to a base unit or storing it consumes considerable time and resources, a compression method that maintains the point target detection capabilities is desired. For this purpose, we developed two temporal compression methods that preserve the temporal profile properties of the point target. We evaluated the proposed compression methods using a signal-to-noise-ratio (SNR)-based measure for point target detection and showed that the compression may improve the SNR results compared to the IR sequence prior to compression.

© 2010 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.4999) Image processing : Pattern recognition, target tracking

ToC Category:
Image Processing

History
Original Manuscript: March 4, 2010
Revised Manuscript: June 1, 2010
Manuscript Accepted: June 7, 2010
Published: June 30, 2010

Citation
Revital Huber-Shalem, Ofer Hadar, Stanley R. Rotman, and Merav Huber-Lerner, "Compression of infrared imagery sequences containing a slow-moving point target," Appl. Opt. 49, 3798-3813 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-19-3798


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. E. G. Richardson, Video Codec Design (Wiley, 2004), Chaps. 3, 4, 5, 7.
  2. MPEG compression standard, www.mpeg.org.
  3. O. Hadar, R. Shmueli, R. Huber, and M. Huber, “Effects of compression parameters on the perceived quality of video stream over a lossy Internet protocol network,” Opt. Eng. 45, 087003 (2006). [CrossRef]
  4. S. Richard, F. Sims, J. A. Mills, and P. N. Topiwala, “Evaluation of video compression for 8 bit and 12 bit IR data with H.264 fidelity range extensions,” Proc. SPIE 5807, 329–340(2005). [CrossRef]
  5. N. Vaswani, A. K. Agrawal, Q. Zheng, and R. Chellappa, “Moving object detection and compression in IR sequences,” in Computer Vision Beyond the Visible Spectrum (Springer, 2004), Chap. 5, pp. 141–165.
  6. R. Saran, H. Babu, and A. Kumar, “Median predictor-based lossless video compression algorithm for IR image sequences,” Defence Sci. J. 59, 183–188 (2009).
  7. IR imagery sequences source, formerly located at http://www.sn.afrl.af.mil/pages/SNH/ir_sensor_branch/sequences.html.
  8. L. V. Rozenberg, “Point target tracking in hyperspectral images,” M.S. thesis (Ben-Gurion University of the Negev, 2005).
  9. C. E. Caefer, J. M. Mooney, and J. Silverman, “Point target detection in consecutive frame staring IR imagery with evolving cloud clutter,” Proc. SPIE 2561, 14–24 (1995). [CrossRef]
  10. C. E. Caefer, J. Silverman, J. M. Mooney, S. DiSalvo, and R. W. Taylor, “Temporal filtering for point target detection in staring IR imagery: I. Damped sinusoid filters,” Proc. SPIE 3373, 111–122 (1998). [CrossRef]
  11. C. E. Caefer, J. Silverman, S. DiSalvo, and R. W. Taylor, “Post-processing of point target detection sinusoidal filters,” Proc. SPlE 4048, 104–111 (2000). [CrossRef]
  12. S. R. Rotman, “Spatial and temporal point tracking in real hyperspectral images,” final report for United States Air Force Office of Scientific Research Infrared Imagery grant 033077 (2006).
  13. L. Varsano, I. Yatsker, and S. R. Rotman, “Temporal target tracking in hyperspectral images,” Opt. Eng. 45, 126201(2006). [CrossRef]
  14. C. E. Caefer, J. Silverman, and J. M. Mooney, “Optimization of point target tracking filters,” IEEE Trans. Aerosp. Electron. Syst. 36, 15–25 (2000). [CrossRef]
  15. S. Chatterjee and A. S. Hadi, “Influential observations, high leverage points, and outliers in linear regression,” Stat. Sci. 1, 379–393 (1986). [CrossRef]
  16. J. Silverman, C. E. Caefer, and J. M. Mooney, “Temporal filtering for point target detection in staring IR imagery part II: recursive variance filter,” Proc. SPIE 3373, 44–53(1998). [CrossRef]
  17. C. E. Caefer, M. S. Stefanou, E. D. Nielsen, A. P. Rizzuto, O. Raviv, and S. R. Rotman, “Analysis of false alarm distributions in the development and evaluation of hyperspectral point target detection algorithms,” Opt. Eng. 46, 076402(2007). [CrossRef]
  18. C. E. Caefer, J. Silverman, O. Orthal, D. Antonelli, Y. Sharoni, and S. R. Rotman, “Improved covariance matrices for point target detection in hyperspectral data,” Opt. Eng. 47, 076402(2008). [CrossRef]
  19. C. C. Liebe, “Accuracy performance of star trackers—a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38, 587–599(2002). [CrossRef]
  20. N. Ahmed, T. Natrajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans. Comput. C-23, 90–93 (1974). [CrossRef]
  21. G. Strang, “The discrete cosine transform,” SIAM Rev. 41, 135–147 (1999).
  22. Z. Wang and B. Hunt, “The discrete W-transform,” Appl. Math. Comput. 16, 19–48 (1985). [CrossRef]
  23. Vcdemo program, http://www-sipl.technion.ac.il/Info/Downloads_VCDemo_e.shtml.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited