OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: E31–E37

Comparison of diurnal contrast changes for millimeter-wave and infrared imagery

John P. Wilson, Daniel G. Mackrides, Jesse P. Samluk, and Dennis W. Prather  »View Author Affiliations


Applied Optics, Vol. 49, Issue 19, pp. E31-E37 (2010)
http://dx.doi.org/10.1364/AO.49.000E31


View Full Text Article

Enhanced HTML    Acrobat PDF (753 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Far-infrared outdoor imagery has a lower contrast in the morning/afternoon relative to the highest contrast, which is observed at 14:00. Millimeter-wave (mmW) imagery can also follow this pattern. However, in this paper, we show that the opposite can occur for mmW imagery, wherein a higher contrast can occur in the morning/afternoon and lower contrast at 14:00. To this end, we show that a wood and rubber sample are observed to have a difference in mmW radiometric temperature of 17 ° C at 9:00 and a difference of only 7 ° C at 14:00. Details of our observations are presented.

© 2010 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(110.6820) Imaging systems : Thermal imaging
(040.2235) Detectors : Far infrared or terahertz
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.7295) Atmospheric and oceanic optics : Visibility and imaging

History
Original Manuscript: December 22, 2009
Revised Manuscript: March 15, 2010
Manuscript Accepted: April 8, 2010
Published: April 23, 2010

Citation
John P. Wilson, Daniel G. Mackrides, Jesse P. Samluk, and Dennis W. Prather, "Comparison of diurnal contrast changes for millimeter-wave and infrared imagery," Appl. Opt. 49, E31-E37 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-19-E31


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003). [CrossRef]
  2. D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007). [CrossRef]
  3. G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007). [CrossRef]
  4. C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009). [CrossRef]
  5. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Addison-Wesley, 1981), Vol.  1.
  6. E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990). [CrossRef]
  7. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362, 379–392 (2004). [CrossRef] [PubMed]
  8. H. J. Liebe, “MPM—an atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650(1989). [CrossRef]
  9. J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001). [CrossRef]
  10. C. M. Bhumralkar, “Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model,” J. Appl. Meteor. 14, 1246–1258(1975). [CrossRef]
  11. A. K. Blackadar, “Modeling the nocturnal boundary layer,” in Preprints of Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality (American Meteorological Society, 1976), pp. 46–49.
  12. F. M. Gottsche and F. S. Olesen, “Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data,” Remote Sens. Environ. 76, 337–348 (2001). [CrossRef]
  13. K. Watson, “Geologic applications of thermal infrared images,” Proc. IEEE 63, 128–137 (1975). [CrossRef]
  14. J. B. Campbell, Introduction to Remote Sensing, 4th ed.(Guildford, 2008).
  15. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996). [CrossRef]
  16. S. J. P. Retief, C. J. Willers, and M. S. Wheeler, “Prediction of thermal crossover based on imaging measurements over the diurnal cycle,” Proc. SPIE 5097, 58–69 (2003). [CrossRef]
  17. F. J. Janza, “Interaction mechanisms,” in Manual of Remote SensingR.G.Reeves, ed. (American Society of Photogrammetry, 1975), pp. 75–179.
  18. C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microwave Theor. Tech. 53, 1732–1738 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited