OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: E38–E47

Analysis of RF imaging applications at frequencies over 100 GHz

H. Bruce Wallace  »View Author Affiliations

Applied Optics, Vol. 49, Issue 19, pp. E38-E47 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (671 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There has been increased interest in applying radio frequency (RF) imaging to solving problems in surveillance, situational awareness, and security screening. This has been brought about by recent advances and new programs in component development from 100 GHz to 1 THz . While no new phenomenology has been uncovered in this region, the potential to finally realize systems that can begin to approach the resolution of optical imaging while operating under adverse conditions of weather and obscuration has prompted new investments. Several of the issues, beyond mere component availability, that must be considered when developing these systems are reviewed. Additionally, previous analysis of two applications proposed to operate in the region above 100 GHz is reviewed: a landing aid system and a standoff security screening imager, both of which are greatly influenced by atmospheric effects.

© 2010 Optical Society of America

OCIS Codes
(280.5600) Remote sensing and sensors : Radar
(110.6795) Imaging systems : Terahertz imaging

Original Manuscript: December 15, 2009
Revised Manuscript: April 5, 2010
Manuscript Accepted: April 8, 2010
Published: April 23, 2010

H. Bruce Wallace, "Analysis of RF imaging applications at frequencies over 100 GHz," Appl. Opt. 49, E38-E47 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “Aviation during World War II,” http://www.century-of-flight.net/Aviation history/WW2/radar in world war two.htm(accessed 29 March 2010).
  2. J. B. Spicer, “Terahertz spectroscopy for condensed phase, energetic chemical species detection,” seminar at Lawrence Livermore National Laboratory, Livermore, California, USA, 6 June 2005.
  3. D. T. Petkie, I. V. Kemp, C. Benton, C. Boyer, L. Owens, J. A. Deibel, C. D. Stoik, and M. J. Bohn, “Nondestructive terahertz imaging for aerospace applications,” Proc. SPIE 7485, 74850D (2009). [CrossRef]
  4. G. Gruner, Millimeter and Submillimeter Spectroscopy of Solids (Springer-Verlag, 1998). [CrossRef]
  5. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag.   55 , 2944–2956 (2007). [CrossRef]
  6. P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech.   41, 1664–1675 (1993). [CrossRef]
  7. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive. Vol. 1. Microwave Remote Sensing Fundamentals and Radiometry (Addison-Wesley, 1981).
  8. D. K. Barton, Radar System Analysis and Modeling (Artech House, 2004).
  9. M. Freebody, “Putting imaging in the picture,” http://www.photonics.com/Article.Aspx?AID=41330 (accessed 29 March 2010).
  10. D. Pukala, L. Samoska, T. Gaier, A. Fung, X. B. Mei, W. Yoshida, J. Lee, J. Uyeda, P. H. Liu, W. R. Deal, V. Radisic, and R. Lai, “Submillimeter-wave InP MMIC amplifiers from 300–345 GHz,” IEEE Microwave Wireless Components Lett. 18, 61–63 (2008). [CrossRef]
  11. I. Kallfass, A. Tessman, A. Leuther, H. Massler, M. Schlectweg, and O. Ambacher, “Millimeter-wave monolithic integrated circuits for imaging and remotes sensing at 140, 200, and 300 GHz,” Proc. SPIE   7485, 74850L (2009). [CrossRef]
  12. H. B. Wallace and M. J. Rosker, “Analytical performance comparison of active and passive SMMW imaging for contraband detection,” Proc. SPIE .  7485, 74850E (2009). [CrossRef]
  13. B. Levush, “Upper MM / SMM sources overview,” paper presented at the Ninth Annual Directed Energy Symposium, Albuquerque, New Mexico, USA, 30 October–3 November 2006.
  14. H. B. Wallace and M. J. Rosker, “A method for analyzing active SMMW imaging system performance,” paper presented at the International Conference on Infrared and Millimeter Waves/THz Electronics, Pasadena, California, USA, 15–19 September 2008.
  15. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002). [CrossRef]
  16. L. Samoska, D. Pukala, M. Soria, and G. Sadowy, “A G-band multi-chip MMIC T/R module for radar applications,” paper presented at the International Conference on Infrared and Millimeter Waves/THz Electronics, Pasadena, California, USA, 15–19 September 2008.
  17. S. E. Gunnarsson, N. Wadefalk, J. Svedin, S. Cherednichenko, I. Angelov, H. Zirath, I. Kallfass, and A. Leuther, “A 220 GHz single-chip receiver MMIC with integrated antenna,” IEEE Microwave Wireless Components Lett.   18, 284–286 (2008). [CrossRef]
  18. J. D. Albrecht, M. J. Rosker, H. B. Wallace, and T. Chang, “THz electronics projects at DARPA: transistors, TMICs, and amplifiers,” paper to be presented at the IEEE MTT 2010 International Microwave Symposium, Anaheim, California, USA, 23–28 May 2010.
  19. V. Radisic, D. Sawdai, D. Scott, W. R. Deal, L. Linh Dang; D. Li, J. Chen, A. Fung, L. Samoska, T. Gaier, and R. Lai, “Demonstration of a 311 GHz fundamental oscillator using InP HBT technology,” IEEE Trans. Microwave Theory Tech. 55, 2329–2335 (2007). [CrossRef]
  20. J. H. Booske, “Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation,” Phys. Plasmas 15, 055502 (2008). [CrossRef]
  21. K. E. Kreischer, J. C. Tucek, D. A. Gallagher, and R. E. Mihailovich, “Operation of a compact, 0.65 THz source,” paper presented at the International Conference on Infrared and Millimeter Waves/THz Electronics, Pasadena, California, USA, 15–19 September 2008.
  22. C. Dietlein, Zoya Popović, and E. N. Grossman, “ Aqueous blackbody calibration source for millimeter-wave/terahertz metrology,” Appl. Opt. 47, 5604–5615 (2008). [CrossRef] [PubMed]
  23. http://www.abmillimetre.com/.
  24. A. R. Kerr, E. Wollack, and N. Horner, “Waveguide flanges for ALMA instrumentation,” ALMA Memo 278 (Atacama Large Millimeter/submillimeter Array Observatory, 8 November 1999).
  25. D. Wikner, “Assessment of MMW imaging technologies,” internal report to DARPA (Army Research Laboratory, July 1997).
  26. D. T. Petkie, F. C. De Lucia, C. Castro, P. Helminger, E. L. Jacobs, S. K. Moyer, S. Murrill, C. Halford, S. Griffin, and C. Franck, “Active and passive millimeter and sub-millimeter-wave imaging,” Proc. SPIE 5989, 598918 (2005). [CrossRef]
  27. http://www.wunderground.com/ accessed (September 2008).
  28. http://mmwconcepts.com/Products.html.
  29. “Attenuation by atmospheric gases,” ITU-R P.676-5 (International Telecommunication Union, 2001), based on MPM89, which provided the model for the losses due to oxygen and water vapor.
  30. “Attenuation due to clouds and fog,” ITU-R P.840-3 (International Telecommunication Union, 1999), which provided the model for losses due to fog and clouds.
  31. “Specific attenuation model for rain for use in prediction methods,” ITU-R P.838-2 (International Telecommunication Union, 2004).
  32. H. Liebe, “MPM89—an atmospheric mm-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650(1989). [CrossRef]
  33. V. W. Richard, J. E. Kammerer, and H. B. Wallace, “Rain backscatter measurements at millimeter wavelengths,” IEEE Trans. Geosci. Remote Sens.   26, 244–252 (1988). [CrossRef]
  34. C. Matzler, “Drop-size distributions and Mie computations for rain,” research report 2002-16 (University of Berne, 2002).
  35. G. Brussaard and P. A. Watson, Atmospheric Modeling and Millimetre Wave Propagation (Chapman & Hall, 1995), pp. 175–176.
  36. T. Loffler and H. Quast, “Towards real-time active THz range imaging for security applications,” paper presented at the SPIE Europe Defence & Security Symposium, Berlin, Germany, September 2009.
  37. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3D imaging at 4 and 25 meter range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56, 2771–2778 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited