OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: E48–E57

Terahertz imaging: applications and perspectives

Christian Jansen, Steffen Wietzke, Ole Peters, Maik Scheller, Nico Vieweg, Mohammed Salhi, Norman Krumbholz, Christian Jördens, Thomas Hochrein, and Martin Koch  »View Author Affiliations

Applied Optics, Vol. 49, Issue 19, pp. E48-E57 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz (THz) spectroscopy, and especially THz imaging, holds large potential in the field of non destructive, contact-free testing. The ongoing advances in the development of THz systems, as well as the appearance of the first related commercial products, indicate that large-scale market introduction of THz systems is rapidly approaching. We review selected industrial applications for THz systems, comprising inline monitoring of compounding processes, plastic weld joint inspection, birefringence analysis of fiber-reinforced components, water distribution monitoring in polymers and plants, as well as quality inspection of food products employing both continuous wave and pulsed THz systems.

© 2010 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(160.5470) Materials : Polymers
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

Original Manuscript: December 22, 2009
Manuscript Accepted: March 4, 2010
Published: May 3, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Christian Jansen, Steffen Wietzke, Ole Peters, Maik Scheller, Nico Vieweg, Mohammed Salhi, Norman Krumbholz, Christian Jördens, Thomas Hochrein, and Martin Koch, "Terahertz imaging: applications and perspectives," Appl. Opt. 49, E48-E57 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.Mittleman, ed., Sensing with Terahertz Radiation(Springer-Verlag, 2003).
  2. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996). [CrossRef]
  3. K.Sakai, ed., Terahertz Optoelectronics (Springer, 2005). [CrossRef]
  4. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002). [CrossRef]
  5. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990). [CrossRef]
  6. A. Nahata, A. S. Weling, and Tony F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  7. S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .
  8. N. Orihashi, S. Hattori, S. Suzuki, and M. Asada, “Voltage-controlled sub-terahertz oscillation of resonant tunnelling diode integrated with slot antenna,” Electron. Lett. 41, 872–874 (2005). [CrossRef]
  9. P. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, “240–325 ghz GaAs cw fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” IEEE Trans. Electron. Devices 50, 867–873 (2003). [CrossRef]
  10. H. Eisele, M. Naftaly, and R. Kamoua, “Generation of submillimeter-wave radiation with GaAs TUNNETT diodes and InP Gunn devices in a second or higher harmonic mode,” Int. J. Infrared Millim. Waves 26, 1–14 (2005). [CrossRef]
  11. T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983). [CrossRef]
  12. A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14, 260–269 (2008). [CrossRef]
  13. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007). [CrossRef]
  14. A. Hirata, M. Harada, and T. Nagatsuma, “120 GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145–2153 (2003). [CrossRef]
  15. N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005). [CrossRef]
  16. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 051104 (2005). [CrossRef]
  17. R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2
  18. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16, 9565–9570 (2008). [CrossRef] [PubMed]
  19. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010). [CrossRef]
  20. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002). [CrossRef]
  21. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  22. X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electro. Waves Appl. 6, 85–106 (1992). [CrossRef]
  23. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972–1974 (1991). [CrossRef]
  24. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301(2005). [CrossRef]
  25. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100 μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282, 1304–1306 (2009). [CrossRef]
  26. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005). [CrossRef]
  27. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998). [CrossRef]
  28. M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microwave Guided Wave Lett. 7, 282–284 (1997). [CrossRef]
  29. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995). [CrossRef]
  30. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47, 3023–3026 (2008). [CrossRef] [PubMed]
  31. A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005). [CrossRef] [PubMed]
  32. B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for terahertz imaging,” Opt. Express 15, 17652–17660 (2007). [CrossRef] [PubMed]
  33. B. Pradarutti, R. Müller, W. Freese, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Terahertz line detection by a microlens array coupled photoconductive antenna array,” Opt. Express 16, 18443–18450 (2008). [CrossRef] [PubMed]
  34. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996). [CrossRef]
  35. L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008). [CrossRef]
  36. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008). [CrossRef]
  37. M. Herrmann, M. Tani, and K. Sakai, “Display modes in time-resolved terahertz imaging,” Jpn. J. Appl. Phys. 39, 6254–6258 (2000). [CrossRef]
  38. C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008). [CrossRef]
  39. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005). [CrossRef]
  40. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007). [CrossRef]
  41. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002). [CrossRef]
  42. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006). [CrossRef]
  43. A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47, 3254–3257 (2008). [CrossRef] [PubMed]
  44. V. A. Bershtein and V. A. Ryzhov, “Far infrared spectroscopy of polymers,” Adv. Polym. Sci. 114, 42–121 (1994).
  45. V. B. F. Mathoted, Calorimetry and Thermal Analysis of Polymers (Hanser, 1994).
  46. G. Rotter and H. Ishida, “Dynamic mechanical analysis of the glass transition: curve resolving applied to polymers,” Macromolecules 25, 2170–2176 (1992). [CrossRef]
  47. J. M. G. Cowie, Polymers: Chemistry and Physics of Modern Materials (Thornes, 2001).
  48. S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009). [CrossRef]
  49. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009). [CrossRef]
  50. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007). [CrossRef]
  51. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009). [CrossRef]
  52. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16, 17039–17051(2008). [CrossRef] [PubMed]
  53. N. Karpowicz, D. Dawes, M. J. Perry, and X.-C. Zhang, “Fire damage on carbon fiber materials characterized by THz waves,” Proc. SPIE 621262120G (2006). [CrossRef]
  54. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006). [CrossRef]
  55. C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009). [CrossRef] [PubMed]
  56. C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010). [CrossRef]
  57. S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007). [CrossRef]
  58. B. L. Deopura, A. K. Sengupta, and A. Verma, “Effect of moisture on physical properties of nylon,” Polym. Commun. 24, 287–288 (1983).
  59. M. Tajvidi and G. Ebrahimi, “Water uptake and mechanical characteristics of natural filler-polypropylene composites,” J. Appl. Polym. Sci. 88, 941–946 (2003). [CrossRef]
  60. C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polym. Test. 29, 209–215 (2010). [CrossRef]
  61. M. A. Salhi, I. Pupeza, and M. Koch, “Confocal THz laser microscope,” J. Infrared Milli. Terahz. Waves 31, 358–366(2009). [CrossRef]
  62. C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009). [CrossRef] [PubMed]
  63. M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited