OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: E67–E82

Millimeter-wave compressive holography

Christy Fernandez Cull, David A. Wikner, Joseph N. Mait, Michael Mattheiss, and David J. Brady  »View Author Affiliations


Applied Optics, Vol. 49, Issue 19, pp. E67-E82 (2010)
http://dx.doi.org/10.1364/AO.49.000E67


View Full Text Article

Enhanced HTML    Acrobat PDF (2212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an active millimeter-wave holographic imaging system that uses compressive measurements for three-dimensional (3D) tomographic object estimation. Our system records a two-dimensional (2D) digitized Gabor hologram by translating a single pixel incoherent receiver. Two approaches for compressive measurement are undertaken: nonlinear inversion of a 2D Gabor hologram for 3D object estimation and nonlinear inversion of a randomly subsampled Gabor hologram for 3D object estimation. The object estimation algorithm minimizes a convex quadratic problem using total variation (TV) regularization for 3D object estimation. We compare object reconstructions using linear backpropagation and TV minimization, and we present simulated and experimental reconstructions from both compressive measurement strategies. In contrast with backpropagation, which estimates the 3D electromagnetic field, TV minimization estimates the 3D object that produces the field. Despite undersampling, range resolution is consistent with the extent of the 3D object band volume.

© 2010 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(110.1758) Imaging systems : Computational imaging
(090.1995) Holography : Digital holography
(110.3010) Imaging systems : Image reconstruction techniques
(100.3200) Image processing : Inverse scattering
(110.3200) Imaging systems : Inverse scattering

History
Original Manuscript: December 16, 2009
Revised Manuscript: March 26, 2010
Manuscript Accepted: April 16, 2010
Published: May 12, 2010

Citation
Christy Fernandez Cull, David A. Wikner, Joseph N. Mait, Michael Mattheiss, and David J. Brady, "Millimeter-wave compressive holography," Appl. Opt. 49, E67-E82 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-19-E67


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Costianes, “An overview of concealed weapons detection for homeland security,” in Applied Imagery and Pattern Recognition Workshop, 2005 (IEEE, 2005), pp. 2–6.
  2. R. McMillan, N. Currie, D. Ferris, Jr., and M. Wicks, “Concealed weapon detection using microwave and millimeter wave sensors,” in Microwave and Millimeter Wave Technology Proceedings, 1998 (IEEE, 1998), pp. 1–4 .
  3. D. McMakin, “Remote concealed weapons and explosive detection on people using millimeter-wave holography,” in 30th Annual 1996 International Carnahan Conference on Security Technology, 1996 (IEEE, 1996) pp. 19–25.
  4. M. R. Fetterman, J. Grata, G. Jubic, J. W. L. Kiser, and A. Visnansky, “Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications,” Opt. Express 16, 20503–20515 (2008). [CrossRef] [PubMed]
  5. S. Stanko, F. Kloppel, J. Huck, D. Notel, M. Hagelen, G. Briese, A. Gregor, S. Erukulla, H.-H. Fuchs, H. Essen, and A. Pagels, “Remote concealed weapon detection in millimeter-wave region: active and passive,” Proc. SPIE 6396, 639606 (2006). [CrossRef]
  6. National Research Council Committee on Assessment of Security Technologies for Transportation, Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons (National Academies Press, 2007). [PubMed]
  7. N. H. Farhat and W. R. Guard, “Millimeter wave holographic imaging of concealed weapons,” in Proceedings of the Institute of Electrical and Electronics Engineers (IEEE, 1971), pp. 1383–1384.
  8. D. Sheen, D. McMakin, and T. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Techn. 49, 1581–1592 (2001). [CrossRef]
  9. R. N. Anderton, R. Appleby, J. E. Beale, P. R. Coward, and S. Price, “Security scanning at 94GHz,” Proc. SPIE 6211, 62110C (2006). [CrossRef]
  10. R. Appleby, R. N. Anderton, N. H. Thomson, and J. W. Jack, “The design of a real-time 94GHz passive millimetre-wave imager for helicopter operations,” Proc. SPIE 5619, 38–46 (2004). [CrossRef]
  11. M. Kemp, “Millimetre wave and terahertz technology for detection of concealed threats—a review,” in Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics (IEEE, 2007), pp. 647–648.
  12. E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006). [CrossRef]
  13. W. L. Chan, M. Moravec, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008). [CrossRef]
  14. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008). [CrossRef] [PubMed]
  15. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009). [CrossRef] [PubMed]
  16. A. Abubaker and P. Van Den Berg, “Total variation as a multiplicative constraint for solving inverse problems,” IEEE Trans. Image Process. 10, 1384–1392 (2001). [CrossRef]
  17. P. Guo and A. Devaney, “Comparison of reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 22, 2338–2347 (2005). [CrossRef]
  18. S. J. LaRoque, E. Y. Sidky, and X. Pan, “Accurate image reconstruction from few-view and limited-angle data in diffraction tomography,” J. Opt. Soc. Am. A 25, 1772–1782 (2008). [CrossRef]
  19. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009). [CrossRef] [PubMed]
  20. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962). [CrossRef]
  21. U. Schnars and W. Juptner, Digital Holography, Digital Hologram Recording, Numerical Reconstruction and Related techniques (Springer-Verlag, 2005).
  22. T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997). [CrossRef]
  23. H. Choo, J. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. Laser Technol. 41, 741–745 (2009). [CrossRef]
  24. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  25. T. Latychevskaia and H. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98, 233901(2007). [CrossRef] [PubMed]
  26. R. Mersereau and A. Oppenheim, “Digital reconstruction of multidimensional signals from their projections,” in Proceedings of the IEEE (IEEE, 1974), pp. 1319–1338. [CrossRef]
  27. R. Mueller, M. Kaveh, and R. Inversion, “A new approach to acoustic tomography using diffraction techniques,” Acoust. Imaging 8, 615–628 (1980). [CrossRef]
  28. J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007). [CrossRef] [PubMed]
  29. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  30. M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).
  31. Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16, 16442–16451 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited