OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 2 — Jan. 10, 2010
  • pp: 142–152

Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy

Narasimhan Rajaram, Timothy J. Aramil, Kelvin Lee, Jason S. Reichenberg, Tri H. Nguyen, and James W. Tunnell  »View Author Affiliations

Applied Optics, Vol. 49, Issue 2, pp. 142-152 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a probe-based portable and clinically compatible instrument for the spectral diagnosis of melanoma and nonmelanoma skin cancers. The instrument combines two modalities—diffuse reflectance and intrinsic fluorescence spectroscopy—to provide complementary information regarding tissue morphology, function, and biochemical composition. The instrument provides a good signal-to-noise ratio for the collected reflectance and laser-induced fluorescence spectra. Validation experiments on tissue phantoms over a physiologically relevant range of albedos ( 0.35 0.99 ) demonstrate an accuracy of close to 10% in determining scattering, absorption and fluorescence characteristics. We also demonstrate the ability of our instrument to collect in vivo diffuse reflectance and fluorescence measurements from clinically normal skin, dysplastic nevus, and malignant nonmelanoma skin cancer.

© 2010 Optical Society of America

OCIS Codes
(170.1870) Medical optics and biotechnology : Dermatology
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 3, 2009
Revised Manuscript: October 4, 2009
Manuscript Accepted: December 3, 2009
Published: January 7, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Narasimhan Rajaram, Timothy J. Aramil, Kelvin Lee, Jason S. Reichenberg, Tri H. Nguyen, and James W. Tunnell, "Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy," Appl. Opt. 49, 142-152 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. American Cancer Society, “Cancer facts and figures 2009,” http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts__Figures_2009.asp?from=fast.
  2. M. Mogensen and G. Jemec, “Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies,” Dermatol. Surg. 33, 1158-1174 (2007).
  3. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  4. R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, and D. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515-522(1992). [CrossRef]
  5. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357(1995). [CrossRef]
  6. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997). [CrossRef]
  7. A. Amelink, H. J. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29, 1087-1089 (2004). [CrossRef]
  8. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).
  9. M. Panjehpour, B. F. Overholt, T. Vo-Dinh, R. C. Haggitt, D. H. Edwards, and F. P. Buckley III, “Endoscopic fluorescence detection of high-grade dysplasia in Barrett's esophagus,” Gastroenterology 111, 93-101 (1996). [CrossRef]
  10. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, and R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 91, 10193-10197 (1994).
  11. M. Brewer, U. Utzinger, E. Silva, D. Gershenson, R. C. Bast Jr., M. Follen, and R. Richards-Kortum, “Fluorescence spectroscopy for in vivo characterization of ovarian tissue,” Lasers. Surg. Med. 29, 128-135 (2001).
  12. R. Richards-Kortum, R. Rava, R. Petras, M. Fitzmaurice, M. Sivak, and M. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777 (1991).
  13. J. M. Levitt, A. Baldwin, A. Papadakis, S. Puri, J. Xylas, K. Munger, and I. Georgakoudi, “Intrinsic fluorescence and redox changes associated with apoptosis of primary human epithelial cells,” J. Biomed. Opt. 11, 064012 (2006).
  14. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104, 19494-19499 (2007).
  15. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem Photobiol 73, 636-641 (2001).
  16. L. Coghlan, U. Utzinger, R. Richards-Kortum, C. Brookner, A. Zuluaga, I. Gimenez-Conti, and M. Follen, “Fluorescence spectroscopy of epithelial tissue throughout the dysplasia-carcinoma sequence in an animal model: spectroscopic changes precede morphologic changes,” Lasers. Surg. Med. 29, 1-10 (2001).
  17. Q. Zhang, M. G. Muller, J. Wu, and M. S. Feld, “Turbidity-free fluorescence spectroscopy of biological tissue,” Opt. Lett. 25, 1451-1453 (2000). [CrossRef]
  18. G. M. Palmer, and N. Ramanujam, “Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt. 13, 024017 (2008).
  19. W. Cottrell, A. Oseroff, and T. Foster, “Portable instrument that integrates irradiation with fluorescence and reflectance spectroscopies during clinical photodynamic therapy of cutaneous disease,” Rev. Sci. Instrum. 77, 064302 (2006). [CrossRef]
  20. C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015 (2008).
  21. C. Zhu, T. M. Breslin, J. Harter, and N. Ramanujam, “Model based and empirical spectral analysis for the diagnosis of breast cancer,” Opt. Express 16, 14961-14978 (2008). [CrossRef]
  22. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003),” IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003). [CrossRef]
  23. I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374-382 (2002).
  24. M. Muller, T. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. Boone, and R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer Res. 97, 1681-1692 (2003).
  25. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
  26. R. Zângaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. Dasari, J. Van Dam, and M. Feld, “Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis,” Appl. Opt. 35, 5211-5219 (1996). [CrossRef]
  27. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus,” Gastroenterology 120, 1620-1629 (2001). [CrossRef]
  28. M. Müller, A. Wax, I. Georgakoudi, R. Dasari, and M. Feld, “A reflectance spectrofluorimeter for real-time spectral diagnosis of disease,” Rev. Sci. Instrum. 73, 3933 (2002). [CrossRef]
  29. J. W. Tunnell, A. E. Desjardins, L. Galindo, I. Georgakoudi, S. A. McGee, J. Mirkovic, M. G. Mueller, J. Nazemi, F. T. Nguyen, A. Wax, Q. Zhang, R. R. Dasari, and M. S. Feld, “Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia,” Technol. Cancer Res. Treat. 2, 505-514(2003).
  30. S. McGee, J. Mirkovic, V. Mardirossian, A. Elackattu, C. Yu, S. Kabani, G. Gallagher, R. Pistey, L. Galindo, and K. Badizadegan, “Model-based spectroscopic analysis of the oral cavity: impact of anatomy,” J. Biomed. Opt. 13, 064034 (2008).
  31. O. R. Scepanovic, M. Fitzmaurice, J. A. Gardecki, G. O. Angheloiu, S. Awasthi, J. T. Motz, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy,” J. Biomed. Opt. 11, 021007 (2006).
  32. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and method of data analysis,” Appl. Spectrosc. 53, 302-311 (1999). [CrossRef]
  33. S. Chang, Y. Mirabal, E. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10, 024031 (2005).
  34. Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7, 587-594 (2002).
  35. J. A. Freeberg, D. M. Serachitopol, N. McKinnon, R. Price, E. N. Atkinson, D. D. Cox, C. MacAulay, R. Richards-Kortum, M. Follen, and B. Pikkula, “Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe,” J. Biomed. Opt. 12, 034015(2007).
  36. C. Redden Weber, R. A. Schwarz, E. N. Atkinson, D. D. Cox, C. Macaulay, M. Follen, and R. Richards-Kortum, “Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer,” J. Biomed. Opt. 13, 064016 (2008).
  37. C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005).
  38. D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000). [CrossRef]
  39. L. Coghlan, U. Utzinger, R. Drezek, D. Heintzelmann, A. Zuluaga, C. Brookner, R. Richards-Kortum, I. Gimenez-Conti, and M. Follen, “Optimal fluorescence excitation wavelengths for detection of squamous intra-epithelial neoplasia: results from an animal model,” Opt. Express 7, 436-446(2000). [CrossRef]
  40. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
  41. Z136 Committee, American National Standard for Safe Use of Lasers (ANSI Z136.1-2000) (ANSI, Laser Institute of America, 2000).
  42. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879-888 (1992). [CrossRef]
  43. A. Kienle, and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246-254 (1997). [CrossRef]
  44. J. Wu, M. Feld, and R. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585-3595 (1993). [CrossRef]
  45. V. P. Wallace, D. C. Crawford, P. S. Mortimer, R. J. Ott, and J. C. Bamber, “Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance,” Phys. Med. Biol. 45, 735-751 (2000). [CrossRef]
  46. B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10, 064020 (2005).
  47. A. Garcia-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M. Duvic, and L. V. Wang, “Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins,” Appl. Opt. 43, 2643-2650 (2004). [CrossRef]
  48. M. Panjehpour, C. E. Julius, M. N. Phan, T. Vo-Dinh, and S. Overholt, “Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers,” Lasers Surg. Med. 31, 367-373 (2002). [CrossRef]
  49. H. Sterenborg, M. Motamedi, R. Wagner, M. Duvic, S. Thomsen, and S. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci. 9, 191-201 (1994).
  50. H. Zeng, C. MacAulay, B. Palcic, and D. I. McLean, “A computerized autofluorescence and diffuse reflectance spectroanalyser system for in vivo skin studies,” Phys. Med. Biol. 38, 231-240 (1993). [CrossRef]
  51. E. Borisova, P. Troyanova, P. Pavlova, and L. Avramov, “Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy,” Quantum Electron. 38, 597-605 (2008). [CrossRef]
  52. S. Jacques, C. Alter, and S. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309-333 (1987).
  53. M. Van Gemert, S. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146-1154(1989). [CrossRef]
  54. R. Reif, O. A'Amar, and I. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317-7328(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited