OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 2 — Jan. 10, 2010
  • pp: 153–162

Depolarization of light in turbid media: a scattering event resolved Monte Carlo study

Xinxin Guo, Michael F. G. Wood, Nirmalya Ghosh, and I. Alex Vitkin  »View Author Affiliations


Applied Optics, Vol. 49, Issue 2, pp. 153-162 (2010)
http://dx.doi.org/10.1364/AO.49.000153


View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Details of light depolarization in turbid media were investigated using polarization-sensitive Monte Carlo simulations. The surviving linear and circular polarization fractions of photons undergoing a particular number of scattering events were studied for different optical properties of the turbid media. It was found that the threshold number of photon scattering interactions that fully randomize the incident polarization (defined here as < 1 % surviving polarization fraction) is not a constant, but varies with the photon detection angle. Larger detection angles, close to backscattering direction, show lower full depolarization threshold number for a given set of sample’s optical properties. The Monte Carlo simulations also confirm that depolarization is not only controlled by the number of scattering events and detection geometry, but is also strongly influenced by other factors such as anisotropy g, medium linear birefringence, and the polarization state of the incident light.

© 2010 Optical Society of America

OCIS Codes
(170.7050) Medical optics and biotechnology : Turbid media
(260.5430) Physical optics : Polarization
(290.4210) Scattering : Multiple scattering

ToC Category:
Polarization

History
Original Manuscript: July 8, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: November 24, 2009
Published: January 7, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Xinxin Guo, Michael F. G. Wood, Nirmalya Ghosh, and I. Alex Vitkin, "Depolarization of light in turbid media: a scattering event resolved Monte Carlo study," Appl. Opt. 49, 153-162 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-2-153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Zimnyakov, Yu. P. Sinichkin, P. V. Zakharov, D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11, 395–412 (2001). [CrossRef]
  2. N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004). [CrossRef]
  3. B. J. DeBoo, J. M. Sasian, R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44, 5434–5445 (2005). [CrossRef] [PubMed]
  4. Y. Liu, Y. L. Kim, X. Li, V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005). [CrossRef] [PubMed]
  5. N. Ghosh, P. K. Gupta, A. Pradhan, S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A 354, 236–242 (2006). [CrossRef]
  6. X. Guo, M. F. G. Wood, I. A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007). [CrossRef] [PubMed]
  7. I. Charalambous, R. Cucu, A. Dogariu, A. Podoleanu, “Experimental investigation of circular light depolarization using polarization sensitive OCT,” Proc. SPIE 6429, 64291S (2007). [CrossRef]
  8. X. Guo, M. F. G. Wood, I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008). [CrossRef]
  9. B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polar imeter,” Diab. Technol. Ther. 8, 156–164 (2006). [CrossRef]
  10. Yu. Lo, Tsung. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259, 40–48 (2006). [CrossRef]
  11. X. Guo, M. F. G. Wood, I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46, 4491–4500 (2007). [CrossRef] [PubMed]
  12. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17, 13792–13809 (2009). [CrossRef] [PubMed]
  13. E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, “Crossed source–detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results,” Appl. Opt. 44, 2519–2529 (2005). [CrossRef] [PubMed]
  14. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15, 10649–10665 (2007). [CrossRef] [PubMed]
  15. D. Yu. Churmakov, V. L. Kuzmin, I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36, 1009–1015 (2006). [CrossRef]
  16. I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004). [CrossRef]
  17. V. L. Kuz’min, I. V. Meglinski, “Backscattering of linearly and circularly polarized light in randomly inhomogeneous media,” Opt. Spectrosc. 106, 257–267 (2009). [CrossRef]
  18. D. Côté, I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004). [CrossRef] [PubMed]
  19. D. Côté, I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148–163 (2005). [CrossRef] [PubMed]
  20. M. F. G. Wood, X. Guo, I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt. 12, 014029 (2007). [CrossRef] [PubMed]
  21. B. Kaplan, G. Ledanois, B. Drévillon, “Muller Matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40, 2769–2777 (2001). [CrossRef]
  22. F. Jaillon, H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003). [CrossRef] [PubMed]
  23. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  24. X. Guo, M. F. G. Wood, I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt. 11, 041105 (2006). [CrossRef] [PubMed]
  25. N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009). [CrossRef] [PubMed]
  26. S. Jiao, G. Yao, L. V. Wang, “Depth-resolved two- dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt. 39, 6318–6324 (2000). [CrossRef]
  27. S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008). [CrossRef] [PubMed]
  28. M. Sakami, A. Dogariu, “Polarized light-pulse transport through scattering media,” J. Opt. Soc. Am. A 23, 664–670 (2006). [CrossRef]
  29. K. C. Hadley, I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002). [CrossRef] [PubMed]
  30. X. Wang, G. Yao, L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002). [CrossRef] [PubMed]
  31. A. Ishimaru, S. Jaruwatanadilok, Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40, 5495–5520 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited