OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 2 — Jan. 10, 2010
  • pp: 213–219

Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar

Zeb W. Barber, Wm. Randall Babbitt, Brant Kaylor, Randy R. Reibel, and Peter A. Roos  »View Author Affiliations


Applied Optics, Vol. 49, Issue 2, pp. 213-219 (2010)
http://dx.doi.org/10.1364/AO.49.000213


View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear ( < 1 ppm ) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

© 2010 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(150.5670) Machine vision : Range finding
(150.3045) Machine vision : Industrial optical metrology
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 21, 2009
Revised Manuscript: December 9, 2009
Manuscript Accepted: December 10, 2009
Published: January 7, 2010

Citation
Zeb W. Barber, Wm. Randall Babbitt, Brant Kaylor, Randy R. Reibel, and Peter A. Roos, "Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar," Appl. Opt. 49, 213-219 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-2-213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-343 (1997). [CrossRef] [PubMed]
  2. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  3. K. Zheng, B. Liu, C. Huang, and M. E. Brezinski, “Experimental confirmation of potential swept source optical coherence tomography performance limitations,” Appl. Opt. 47, 6151-6158 (2008). [CrossRef] [PubMed]
  4. E. D. Moore and R. R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express 16, 13139-13149 (2008). [CrossRef] [PubMed]
  5. A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46, 073602 (2007). [CrossRef]
  6. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44, 7621-7629 (2005). [CrossRef] [PubMed]
  7. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrological applications,” Opt. Lett. 34, 3692-3694(2009). [CrossRef] [PubMed]
  8. T.-J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt. 44, 7630-7634(2005). [CrossRef] [PubMed]
  9. T.-J. Ahn and D. Y. Kim, “Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation,” Appl. Opt. 46, 2394-2400 (2007). [CrossRef] [PubMed]
  10. K. Iiyama, L.-T. Wang, and K. ichi Hayashi, “Linearizing optical frequency-sweep of a laser diode for fmcw reflectometry,” J. Lightwave Technol. 14, 173-178 (1996). [CrossRef]
  11. C. Greiner, B. Boggs, T. Wang, and T. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280-1282 (1998). [CrossRef]
  12. G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgere, J.-L. L. Gout, and F. Bretenaker, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484-487 (2007). [CrossRef] [PubMed]
  13. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17, 15991-15999(2009). [CrossRef] [PubMed]
  14. L. Qiao, D. Sun, X. Zhang, and Y. Zhao, “Linearity requirements for a linear frequency modulation lidar,” Opt. Rev. 6, 160-162 (1999). [CrossRef]
  15. P. deGroot, “Chromatic dipersion effects in coherent absolute ranging,” Opt. Lett. 17, 898-900 (1992). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  17. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907-926 (1993). [CrossRef]
  18. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445-1448 (1979). [CrossRef] [PubMed]
  19. W.-C. Chuang, Y.-S. Tsai, J.-Y.Shieh, and C.-Y.Leung, Chin. J. Phys. 38, 437-442 (2000).
  20. T. H.Yoon, J. Ye, J. L.Hall, and J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He-Ne laser at 633 nm,” Appl. Phys. B 72, 221-226 (2001).
  21. A. Pesatori, M. Norgia, V. Calabrese, G. Galzerano, E. Bava, and C. Svelto, “Optical frequency standard by high Doppler-broadened absorption and external-cavity laser diode at 1.541 m,” IEEE Trans. Instrum. Meas. 57, 1708-1712(2008). [CrossRef]
  22. H. Sasada and K. Yamada, “Calibration lines of HCN in the 1.5 mm region,” Appl. Opt. 29, 3535-3547 (1990). [CrossRef] [PubMed]
  23. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, “Absolute frequency measurement of a 1.5 mm acetylene standard by use of a combined frequency chain and femtosecond comb,” Opt. Lett. 29, 566-568(2004). [CrossRef] [PubMed]
  24. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with sub-hertz relative linewidths,” Opt. Lett. 31, 3046-3048 (2006). [CrossRef] [PubMed]
  25. B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203-215 (2004). [CrossRef]
  26. J. Zheng, “Analysis of optical frequency-modulated continuous-wave interference,” Appl. Opt. 43, 4189-4198 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited