OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 2 — Jan. 10, 2010
  • pp: 247–257

Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging

Zongyuan Liu, Sheng Liu, Kai Wang, and Xiaobing Luo  »View Author Affiliations


Applied Optics, Vol. 49, Issue 2, pp. 247-257 (2010)
http://dx.doi.org/10.1364/AO.49.000247


View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical properties of YAG:Ce phosphor were measured by a double-integrating-sphere system and calculated by Mie theory and Monte Carlo ray tracing to provide precise optical characterizations of YAG:Ce phosphor for white light-emitting diode (LED) packaging design. Measurement results showed that the phosphor presents strong absorption for blue light, high reflection for yellow light, and an isotropic emission pattern of converted light. The conversion efficiency and quantum efficiency for the saturated phosphor are around 70% and 87%, respectively. Based on the measurement results, the absorption coefficient, scattering coefficient, and anisotropy factor of the phosphor calculated by Mie theory were compared with those calculated by ray-tracing simulation to modify Mie theory to find a reasonable method that can easily obtain the optical constants of YAG:Ce phosphor. Comparisons revealed that Mie theory can predict the variation of the optical constants of phosphor, but the absorption and scattering cross sections should be multiplied with two fitting parameters. The fitting pa rameters have been given in this study and can be obtained by testing packaged LEDs with different phosphor concentrations.

© 2010 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.2540) Materials : Fluorescent and luminescent materials
(230.3670) Optical devices : Light-emitting diodes
(290.4020) Scattering : Mie theory
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 13, 2009
Manuscript Accepted: November 15, 2009
Published: January 8, 2010

Citation
Zongyuan Liu, Sheng Liu, Kai Wang, and Xiaobing Luo, "Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging," Appl. Opt. 49, 247-257 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-2-247


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. F. Schubert and J. K. Kim, “Solid-state light source getting smart,” Science 308, 1274-1278 (2005). [CrossRef] [PubMed]
  2. J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16, 21835-21842 (2008). [CrossRef] [PubMed]
  3. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002). [CrossRef]
  4. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160-175 (2007). [CrossRef]
  5. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417-418 (1997). [CrossRef]
  6. K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R.-J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor,” Opt. Lett. 29, 2001-2003 (2004). [CrossRef] [PubMed]
  7. H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17, 1160-1162 (2005). [CrossRef]
  8. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers, 2nd ed. (Springer, 1997), pp. 215-230.
  9. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339-345 (2002). [CrossRef]
  10. R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Hoppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202, 1727-1732 (2005). [CrossRef]
  11. R. J. Xie, N. Hirosaki, K. Sakuma, and N. Kimura, “White light-emitting diodes (LEDs) using (oxy)nitride phosphors,” J. Phys. D 41, 144013 (2008). [CrossRef]
  12. M. Zachau, D. Becker, D. Berben, T. Fiedler, F. Jermann, and F. Zwaschka, “Phosphors for solid state lighting,” Proc. SPIE 6910, 691010 (2008). [CrossRef]
  13. Z. Liu, S. Liu, K. Wang, and X. Luo, “Status and prospect for phosphor-based white light-emitting diodes packaging,” Front. Optoelectron. China 2, 119-140 (2009). [CrossRef]
  14. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005). [CrossRef]
  15. S. C. Allen and A. J. Steckl, “ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection,” J. Display Technol. 3, 155-159 (2007). [CrossRef]
  16. S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Appl. Phys. Lett. 92, 143309 (2008). [CrossRef]
  17. Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Optical analysis of phosphor's location for high-power light-emitting diodes,” IEEE Trans. Device Mater. Reliab. 9, 65-73 (2009). [CrossRef]
  18. N. Narendran, F. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi 202, R60-R62 (2005). [CrossRef]
  19. N. T. Tran and F. G. Shi, “Studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes,” J. Lightwave Technol. 26, 3556-3559 (2008). [CrossRef]
  20. L. Wang, P. F. Gu, and S. Z. Jin, “Enhancement of flip-chip white light-emitting diodes with a one-dimensional photonic crystal,” Opt. Lett. 34, 301-303 (2009). [CrossRef] [PubMed]
  21. C. Sommer, F. P. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, and G. Leising, “Tailoring of the color conversion elements in phosphor-converted high-power LEDs by optical simulations,” IEEE Photon. Technol. Lett. 20, 739-741 (2008). [CrossRef]
  22. Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027-2029(2008). [CrossRef]
  23. Y. Zhu, N. Narendran, and Y. Gu, “Investigation of the optical properties of YAG:Ce phosphor,” Proc. SPIE 6337, 63370S(2006). [CrossRef]
  24. D.-Y. Kang, E. Wu, and D.-M. Wang, “Modeling white light-emitting diodes with phosphor layers,” Appl. Phys. Lett. 89, 231102 (2006). [CrossRef]
  25. J. W. Pickering, S. A. Prahl, N. v. Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399-410 (1993). [CrossRef] [PubMed]
  26. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J Biomed. Opt. 4, 47-53 (1999). [CrossRef]
  27. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).
  28. H. G. Volz, Industrial Color Testing: Fundamentals and Techniques (Wiley-VCH, 2001). [CrossRef]
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 57-129.
  30. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water (Elsevier, 2007), pp. 87-130. [CrossRef]
  31. A. R. Jones, “Light scattering for particle characterization,” Prog. Energy Combust. Sci. 25, 1-53 (1999). [CrossRef]
  32. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2004).
  33. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997). [CrossRef]
  34. M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, “Singe scattering by a small volume element,” J. Opt. Soc. Am. A 21, 71-87 (2004). [CrossRef]
  35. M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927-4940 (1996). [CrossRef] [PubMed]
  36. D. M. Hembree and H. R. Smyrl, “Anomalous dispersion effects in diffuse reflectance infrared Fourier transform spectroscopy: a study of optical geometries,” Appl. Spectrosc. 43, 267-274 (1989). [CrossRef]
  37. M. K. Gunde and Z. C. Orel, “Absorption and scattering of light by pigment particles in solar-absorbing paints,” Appl. Opt. 39, 622-628 (2000). [CrossRef]
  38. S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in optical properties of Ce:YAG crystals under annealing and irradiation processing,” Cryst. Res. Technol. 34, 1031-1036 (1999). [CrossRef]
  39. M. Kucera, P. Hasa, and J. Hakenov, “Optical and magneto-optical properties of Ce: YAG,” J. Alloys Compd. 451, 146-148 (2008). [CrossRef]
  40. E. Mihokova, M. Nikl, J. A. Mares, A. Beitlerov, A. Vedda, K. Nejezchleb, K. Blazek, and C. D'Ambrosio, “Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics,” J. Lumin. 126, 77-80 (2007). [CrossRef]
  41. G. J. Zhao, X. H. Zeng, J. Xu, S. M. Zhou, and Y. Z. Zhou, “Temperature gradient technique (TGT) growth and characterizations of large-sized Ce-doped YAG scintillation crystal,” Phys. Status Solidi A 199, 355-359 (2003). [CrossRef]
  42. J. A. Mares, A. Beitlerova, M. Nikl, N. Solovieva, K. Nitsch, M. Kucera, M. Kubova, V. Gorbenko, and Y. Zorenko, “Scintillation and optical properties of YAG:Ce films grown by liquid phase epitaxy,” Radiat. Meas. 42, 533-536 (2007). [CrossRef]
  43. G. Sharma, Digital Color Imaging Handbook (CRC, 2003).
  44. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited