OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 20 — Jul. 10, 2010
  • pp: 3854–3859

Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy

Charlotte I. Falk, Jan Hald, Jan C. Petersen, and Jens K. Lyngsø  »View Author Affiliations

Applied Optics, Vol. 49, Issue 20, pp. 3854-3859 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transmission properties of five types of hollow-core photonic bandgap fibers (HC-PBFs) are characterized in the telecom wavelength range around 1.5 μm . The variations in optical transmission are measured as a function of laser frequency over a 2 GHz scan range as well as a function of time over several hours. The influence of these variations on spectroscopy of molecules in a HC-PBF is simulated.

© 2010 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 23, 2010
Revised Manuscript: June 10, 2010
Manuscript Accepted: June 10, 2010
Published: July 2, 2010

Charlotte I. Falk, Jan Hald, Jan C. Petersen, and Jens K. Lyngsø, "Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy," Appl. Opt. 49, 3854-3859 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006). [CrossRef] [PubMed]
  2. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007). [CrossRef] [PubMed]
  3. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009). [CrossRef] [PubMed]
  4. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004). [CrossRef] [PubMed]
  5. A. Lambrecht, S. Hartwig, J. Herbst, and J. Wöllenstein, “Hollow fibers for compact infrared gas sensors,” Proc. SPIE 6901, 69010V (2008). [CrossRef]
  6. X. Zhou, J. Hou, and J. Zhao, “New gas sensor head without gas chamber by hollow core PBF,” Proc. SPIE 6724, 672407(2007). [CrossRef]
  7. A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm,” Opt. Express 15, 17570–17576 (2007). [CrossRef] [PubMed]
  8. A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008). [CrossRef]
  9. L. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007). [CrossRef] [PubMed]
  10. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008). [CrossRef] [PubMed]
  11. C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690–6695 (2007). [CrossRef] [PubMed]
  12. J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009). [CrossRef]
  13. G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008). [CrossRef] [PubMed]
  14. C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007). [CrossRef] [PubMed]
  15. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201(2005). [CrossRef] [PubMed]
  16. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999). [CrossRef]
  17. http://www.nktphotonics.com.
  18. R. Guenther, Modern Optics (Wiley, 1990).
  19. R. Amezcua-Correra, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16, 1142–1150 (2008). [CrossRef]
  20. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  21. J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999). [CrossRef]
  22. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  23. H. Huang and K. Lehman, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49, 1378–1387 (2010). [CrossRef] [PubMed]
  24. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited