OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 20 — Jul. 10, 2010
  • pp: 3894–3899

Photocurrent switching method based on photoisomerization of diarylethene layer for nondestructive readout of photochromic optical memory

Tsuyoshi Tsujioka, Itaru Onishi, and Daisuke Natsume  »View Author Affiliations

Applied Optics, Vol. 49, Issue 20, pp. 3894-3899 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (738 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on photocurrent switching based on photoisomerization for the nondestructive readout of photochromic optical memory. The photoisomerization of a diarylethene (DAE) memory layer switched the photocurrent generated in a light-absorbing phthalocyanine layer upon irradiation of a laser light. This switching is based on the ionization potential change of the DAE molecules. Switching characteristics of the photocurrent were investigated for the laser light with a wavelength of 410 nm , 630 nm , or 780 nm . Excellent on–off ratios of the photocurrent were achieved by irradiation at 630 nm and 780 nm . When the pulsed laser light with a wavelength of 780 nm was repeatedly irradiated to the colored and uncolored memory devices, no change of the photocurrent signal levels was observed, even after 8 × 10 5 cycles, indicating a successful demonstration of the nondestructive readout.

© 2010 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(210.0210) Optical data storage : Optical data storage
(210.4810) Optical data storage : Optical storage-recording materials
(160.5335) Materials : Photosensitive materials

ToC Category:
Photocurrent Switching

Original Manuscript: April 5, 2010
Manuscript Accepted: June 13, 2010
Published: July 6, 2010

Tsuyoshi Tsujioka, Itaru Onishi, and Daisuke Natsume, "Photocurrent switching method based on photoisomerization of diarylethene layer for nondestructive readout of photochromic optical memory," Appl. Opt. 49, 3894-3899 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387–3394(2001). [CrossRef]
  2. M. Tsuji, N. Nishizawa, and Y. Kawata, “Three-dimensional two-photon bit-recording with a compact fiber laser,” IEEE Trans. Magn. 45, 2232–2235 (2009). [CrossRef]
  3. Y. Mitsuhashi, “Optical storage: science and technology,” Japan J. Appl. Phys. 1 37, 2079–2083 (1998). [CrossRef]
  4. B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001). [CrossRef]
  5. H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006). [CrossRef] [PubMed]
  6. K. Ogawa and Y. Kobuke, “Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy,” Org. Biomol. Chem. 7, 2241–2246 (2009). [CrossRef] [PubMed]
  7. M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006). [CrossRef]
  8. J. A. Stuart, D. L. Marcy, K. J. Wise, and R. R. Birge, “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met. 127, 3–15 (2002). [CrossRef]
  9. I. Ichimura, K. Saito, T. Yamasaki, and K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45, 1794–1803 (2006). [CrossRef] [PubMed]
  10. M. Miyamoto, M. Nakano, M. Nakabayashi, S. Miyata, and Y. Kawata, “Fabrication of multilayered photochromic memory media using pressure-sensitive adhesives,” Appl. Opt. 45, 8424–8427 (2006). [CrossRef] [PubMed]
  11. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000). [CrossRef]
  12. M. Irie, H. Ishida, and T. Tsujioka, “Rewritable near-field optical recording on photochromic perinaphthothioindigo thin films readout by fluorescence,” Japan J. Appl. Phys. 1 38, 6114–6117 (1999). [CrossRef]
  13. M. S. Kim, T. Sakata, T. Kawai, and M. Irie, “Amorphous photochromic films for near-field optical recording,” Japan J. Appl. Phys. 1 42, 3676–3681 (2003). [CrossRef]
  14. T. Shiono, T. Mihara, and Y. Kobayashi, “Design and fabrication of thin-film diarylethene recording layer and its reflective reproduction for super-multilayered optical memories,” Japan J. Appl. Phys. 1 46, 3873–3877 (2007). [CrossRef]
  15. T. Tsujioka and M. Irie, “Theoretical study on data transfer rate of near-field photochromic memory,” Japan J. Appl. Phys. 1 38, 4100–4104 (1999). [CrossRef]
  16. T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997). [CrossRef]
  17. T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994). [CrossRef]
  18. S. J. Lim, J. Seo, and S. Y. Park, “Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout,” J. Am. Chem. Soc. 128, 14542–14547(2006). [CrossRef] [PubMed]
  19. P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).
  20. S. Akita, Y. Ishii, S. Maruta, and K. Watanabe, “Control of isomerization in photochromic molecule with ultraviolet and visible laser,” Proc. SPIE 6346, 63462L (2006). [CrossRef]
  21. V. A. Barachevsky, “Organic frequency: selective recording media,” Proc. SPIE 3055, 2 (1997). [CrossRef]
  22. T. Tsujioka, M. Kume, and M. Irie, “Superlow-power readout characteristics of photochromic memory,” Japan J. Appl. Phys. 1 34, 6439–6443 (1995). [CrossRef]
  23. G. M. Tsivgoulis and J. M. Lehn, “Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory,” Angew. Chem. 34, 1119–1122(1995). [CrossRef]
  24. A. J. Myles and N. R. Branda, “1,2-Dithienylethene photochromes and non-destructive erasable memory,” Adv. Funct. Mater. 12, 167–173 (2002). [CrossRef]
  25. P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. 17, 1798–1803(2005). [CrossRef]
  26. P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009). [CrossRef]
  27. T. Tsujioka and H. Kondo, “Organic bistable molecular memory using photochromic diarylethene,” Appl. Phys. Lett. 83, 937–939 (2003). [CrossRef]
  28. T. Tsujioka, K. Masui, and F. Otoshi, “Photocurrent detection from photochromic diarylethene film,” Appl. Phys. Lett. 85, 3128–3130 (2004). [CrossRef]
  29. M. Weiter, J. Navratil, M. Vala, and P. Toman, “Photoinduced reversible switching of charge carrier mobility in conjugated polymers,” Eur. Phys. J. Appl. Phys. 48 (2009). [CrossRef]
  30. T. Kwon, J. Baek, J. Do, and E. Kim, “Photovoltaic effect of a thiophene substituted diarylethene polymer film,” in International Conference on Digital Printing Technologies (Society for Imaging Science and Technology, 2007), pp. 700–703.
  31. T. Tsujioka and M. Irie, “Electrical functions of photochromic molecules,” J. Photochem. Photobiol. C Photochem. Rev. 11, 1–14 (2010). [CrossRef]
  32. E. Kim and H. W. Lee, “Photocurrent generation of diarylethene polymers,” Mol. Cryst. Liq. Cryst. 431, 581–586 (2005). [CrossRef]
  33. A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001). [CrossRef]
  34. T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001). [CrossRef]
  35. T. Tsujioka and M. Irie, “Signal-to-noise ratio of nondestructive photocurrent-detection readout in near-field photochromic memory: Theoretical study,” J. Opt. Soc. Am. B 19, 297–303 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited