OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 20 — Jul. 10, 2010
  • pp: 4018–4023

Research on heterodyne detection of a mode-locked pulse laser based on an acousto-optic frequency shift

Yan Bai, Deming Ren, Weijiang Zhao, Liming Qian, Zhenlei Chen, and Yan Liu  »View Author Affiliations

Applied Optics, Vol. 49, Issue 20, pp. 4018-4023 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (773 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Heterodyne detection research is carried out on a mode-locked pulse laser using an acousto-optic frequency shifter (AOFS). Theoretical calculation and numerical simulation of the beat frequency of the mode-locked pulse were carried out, and the results show that the frequency offset can be calculated according to the beat period of the pulse waveform, and the offset is the frequency difference between the two adjacent longitudinal modes. Experiments were implemented with a self-built mode-locked laser using an AOFS to simulate the frequency shift of the detection laser induced by the object, the coherent beat frequency of the signal light and local oscillation light that were observed on the surface of the detector. The beat frequency wave was processed by filtering to obtain the frequency shift of the signal light. The experimental results are in good agreement with the numerical simulation.

© 2010 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(070.1060) Fourier optics and signal processing : Acousto-optical signal processing
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:

Original Manuscript: April 7, 2010
Revised Manuscript: June 15, 2010
Manuscript Accepted: June 23, 2010
Published: July 9, 2010

Yan Bai, Deming Ren, Weijiang Zhao, Liming Qian, Zhenlei Chen, and Yan Liu, "Research on heterodyne detection of a mode-locked pulse laser based on an acousto-optic frequency shift," Appl. Opt. 49, 4018-4023 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Killinger, N. Menyuk, and W. E. DeFeo, “Experimental comparison of heterodyne and direct detection for pulsed differential absorption CO2 lidar,” Appl. Opt. 22, 682–689 (1983). [CrossRef] [PubMed]
  2. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004). [CrossRef] [PubMed]
  3. K. P. Chan, D. K. Killinger, and N. Sugimoto, “Heterodyne Doppler 1 μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence,” Appl. Opt. 30, 2617–2627 (1991). [CrossRef] [PubMed]
  4. M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991). [CrossRef]
  5. Z. Ma, C. Zhang, P. Ou, G. Luo, and Z. Zhang, “Application of fiber interferometer in coherent Doppler lidar,” Chin. Opt. Lett. 6, 261–263 (2008). [CrossRef]
  6. C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).
  7. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001). [CrossRef]
  8. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  9. B. Bouma, G. J. Tearney, S. A. Boppart, M. R.Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3laser source,” Opt. Lett. 201486–1488 (1995). [CrossRef] [PubMed]
  10. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29250–252 (2004). [CrossRef] [PubMed]
  11. T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, “Long-term carrier-envelope phase coherence,” Opt. Lett. 27, 1436–1438 (2002). [CrossRef]
  12. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28947–949 (2003). [CrossRef] [PubMed]
  13. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001). [CrossRef] [PubMed]
  14. Z. Wei, Y. Kobayashi, and K. Torizuka, “Relative carrier-envelope phase dynamics between passively synchronized Ti:sapphire and Cr:forsterite lasers,” Opt. Lett. 27, 2121–2123(2002). [CrossRef]
  15. L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004). [CrossRef]
  16. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  17. K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurement of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980). [CrossRef]
  18. P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” IEEE J. Quantum Electron. 18, 145–154(1986).
  19. J. Wang, H. Zhang, C. Zhao, and S. Yang, “Injection seeding Nd∶YAG laser and its application in heterodyne detection,” Chin. J. Lasers 34, 186–190 (2007), in Chinese.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited