OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 21 — Jul. 20, 2010
  • pp: 4029–4033

High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing

Timothy T.-Y. Lam, Jong H. Chow, Daniel A. Shaddock, Ian C. M. Littler, Gianluca Gagliardi, Malcolm B. Gray, and David E. McClelland  »View Author Affiliations


Applied Optics, Vol. 49, Issue 21, pp. 4029-4033 (2010)
http://dx.doi.org/10.1364/AO.49.004029


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz . A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry–Perot sensor, transferring the detected signals onto the laser. An H 13 C 14 N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.

© 2010 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 8, 2010
Manuscript Accepted: May 26, 2010
Published: July 13, 2010

Citation
Timothy T.-Y. Lam, Jong H. Chow, Daniel A. Shaddock, Ian C. M. Littler, Gianluca Gagliardi, Malcolm B. Gray, and David E. McClelland, "High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing," Appl. Opt. 49, 4029-4033 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-21-4029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197–R216 (2004). [CrossRef]
  2. A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).
  3. K. Wood, T. Brown, R. Rogowski, and B. Jensen, “Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor,” Smart Mater. Struct. 9, 163–169 (2000). [CrossRef]
  4. R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997). [CrossRef]
  5. J. H. Chow, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Demonstration of a passive sub-picostrain fiber strain sensor,” Opt. Lett. 30, 1923–1925 (2005). [CrossRef] [PubMed]
  6. T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009). [CrossRef]
  7. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008). [CrossRef]
  8. N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007). [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  10. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001). [CrossRef]
  11. R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573–575 (1973). [CrossRef]
  12. S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530–1560 nm wavelength calibration—SRM 2519,” NIST Special Publication 260-137, National Institute of Standards and Technology, Gaithersburg, Md., 1998.
  13. A. Arie, B. Lissak, and M. Tur, “Static Fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849–1855 (1999). [CrossRef]
  14. W. Demotröder, Laser Spectroscopy (Springer-Verlag, 2003).
  15. A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621(1982). [CrossRef]
  16. T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010) [CrossRef]
  17. A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).
  18. A. Dandridge and H. F. Taylor, “Correlation of low-frequency intensity and frequency fluctuations in GaAlAs lasers,” IEEE Trans. Microwave Theory Tech. 30, 1726–1738 (1982). [CrossRef]
  19. W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited