OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 21 — Jul. 20, 2010
  • pp: 4034–4043

Properties of a laser cavity containing an absorbing ring

Abdelkrim Hasnaoui and Kamel Ait-Ameur  »View Author Affiliations

Applied Optics, Vol. 49, Issue 21, pp. 4034-4043 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper considers the transverse optical properties of an absorbing ring when it is lighted by a symmetrical Laguerre–Gauss beam TEM p 0 . It is demonstrated that the insertion of an opaque ring having adequate size inside a diaphragmed laser cavity is able to improve greatly (rate of about 100%) the discrimination between the TEM 00 and the TEM 10 modes, while keeping the diffraction losses unchanged or even decreased.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(140.3410) Lasers and laser optics : Laser resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 14, 2010
Revised Manuscript: June 13, 2010
Manuscript Accepted: June 18, 2010
Published: July 19, 2010

Abdelkrim Hasnaoui and Kamel Ait-Ameur, "Properties of a laser cavity containing an absorbing ring," Appl. Opt. 49, 4034-4043 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
  2. H. Kogelnik and T. Li, “Laser beams and resonator,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  3. K. Ait-Ameur and G. Stephan, “Effective beam truncation of the fundamental mode in an apertured cavity,” Opt. Lett. 18, 938–940 (1993). [CrossRef] [PubMed]
  4. K. Ait-Ameur, “Influence of the longitudinal position of an aperture inside a cavity on the transverse mode discrimination,” Appl. Opt. 32, 7366–7372 (1993). [CrossRef] [PubMed]
  5. K. Ait-Ameur, M. Brunel, and F. Sanchez, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000). [CrossRef]
  6. N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSAF laser using a binary diffractive optics,” Appl. Opt. 43, 5047–5059 (2004). [CrossRef] [PubMed]
  7. R. de Saint Denis, N. Passilly, and K. Ait-Ameur, “Laser beam brightness of apertured optical resonators,” Opt. Commun. 264, 193–202 (2006). [CrossRef]
  8. S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999). [CrossRef]
  9. J. Bourderionnet, N. Huot, A. Brignon, and J. P. Huignard, “Spatial mode control of a diode-pumped Nd:YAG laser by use of an intracavity holographic phase plate,” Opt. Lett. 25, 1579–1581 (2000). [CrossRef]
  10. R. de Saint Denis, N. Passilly, M. Fromager, E. Cagniot, and K. Ait-Ameur, “Diffraction properties of opaque disks outside and inside a laser cavity,” Opt. Commun. 281, 4758–4761 (2008). [CrossRef]
  11. I. A. Litvin and A. Forbes, “Bessel-Gauss resonator with internal amplitude filter,” Opt. Commun. 281, 2385–2392(2008). [CrossRef]
  12. M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular filters,” Opt. Commun. 165, 267–278 (1999). [CrossRef]
  13. M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, “Tailoring the axial shape of the point spread function using the Toraldo concept,” Opt. Express 10, 98–103 (2002). [PubMed]
  14. V. Paeder, T. Scharf, P. Ruffieux, H.-P. Herzig, R. Voelkel, and K. J. Weible, “Microlenses with annular amplitude and phase masks,” J. Eur. Opt. Soc. Rapid Publ. 2, 07005 (2007). [CrossRef]
  15. K. Ait-Ameur, “Effects of a phase aperture on the fundamental mode of a hard-apertured cavity,” J. Mod. Opt. 49, 1157–1168(2002). [CrossRef]
  16. K. Ait-Ameur, F. Sanchez, and M. Brunel, “The transfer of TEM00 and TEM01 beams through a hard-aperture,” J. Mod. Opt. 47, 1203–1211 (2000).
  17. E. Cagniot, Z. Derrar-Kaddour, M. Fromager, and K. Aït-Ameur, “Improving both transverse mode discrimination and diffraction losses in a plano-concave cavity,” Opt. Commun. 281, 4449–4454 (2008). [CrossRef]
  18. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Elsevier, 2007), p. 106.
  19. D. R. Hall and P. E. Jackson, The Physics and Technology of Laser Resonators (Institute of Physics, 1992), p. 137.
  20. A. E. Siegman, Lasers (University Science, 1986), Chap. 17.
  21. U. D. Zeitner and F. Wyroski, “High modal discrimination for laser resonators with Gaussian output beam,” J. Mod. Opt. 46, 1309–1314 (1999).
  22. A. A. Napartovitch, N. N. Elkin, V. N. Troschieva, D. V. Vysotski, and J. R. Leger, “Simplified intracavity phase plates for increasing laser-mode discrimination,” Appl. Opt. 38, 3025–3029 (1999). [CrossRef]
  23. W. W. Rigrod, “Isolation of axi-symmetrical optical-resonator modes,” Appl. Phys. Lett. 2, 51–53 (1963). [CrossRef]
  24. K. M. Abramski, H. J. Baker, A. D. Colley, and R. R. Hall, “Single-mode selection using coherent imaging within a slab waveguide CO2 laser,” Appl. Phys. Lett. 60, 2469–2471 (1992). [CrossRef]
  25. D. Chen, Z. Wang, and J. R. Leger, “Measurement of the modal properties of a diffracted-optic graded-phase resonator,” Opt. Lett. 20, 663–665 (1995). [CrossRef] [PubMed]
  26. M. Ciofini, A. Labate, R. Meucci, and P. Y. Wang, “Experimental evidence of selection and stabilization of spatial patterns in a CO2 laser by means of spatial perturbations,” Opt. Commun. 154, 307–312 (1998). [CrossRef]
  27. K. Aït-Ameur, H. Ladjouze, and G. Stéphan, “Diffraction effects in a resonant cavity with two non-equivalent apertures,” Appl. Opt. 31, 397–405 (1992). [CrossRef] [PubMed]
  28. R. de Saint Denis, N. Passilly, and K. Aït-Ameur, “Laser beam brightness of apertured optical resonators,” Opt. Commun. 264, 193–202 (2006). [CrossRef]
  29. Z. Derrar-Kaddour, A. Taleb, K. Aït-Ameur, G. Martel, and E. Cagniot, “Alternative model for computing intensity patterns through apertured ABCD systems,” Opt. Commun. 281, 1384–1395 (2008). [CrossRef]
  30. P.-A. Bélanger, Y. Champagne, and C. Paré, “Beam propagation factor of diffracted laser beams,” Opt. Commun. 105, 233–242 (1994). [CrossRef]
  31. R. Martinez-Herrero and P. M. Mejias, “Second-order spatial characterization of hard-edge diffracted beams,” Opt. Lett. 18, 1669–1671 (1993). [CrossRef] [PubMed]
  32. Z. Mei and D. Zhao, “The generalized beam propagation factor of truncated standard and elegant Laguerre-Gaussian beams,” J. Opt. A Pure Appl. Opt. 6, 1005–1011. [CrossRef]
  33. S. Amano and T. Mochizuki, “Propagation characteristics of diffracted M2 beam,” Appl. Opt. 41, 6325–6331(2002). [CrossRef] [PubMed]
  34. S. Amarande, A. Giesen, and H. Hügel, “Propagation analysis of self-convergent beam width and characterization of hard-edge diffracted beams,” Appl. Opt. 39, 3914–3924(2000). [CrossRef]
  35. S. Vicalvi, R. Borghi, M. Santarsiero, and F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998). [CrossRef]
  36. A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990). [CrossRef]
  37. N. Passilly, G. Martel, and K. Aït-Ameur, “Beam propagation factor of truncated Laguerre-Gauss beams,” J. Mod. Opt. 51, 2279–2286 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited