OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 21 — Jul. 20, 2010
  • pp: 4088–4095

Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror

Qinghua Yang  »View Author Affiliations


Applied Optics, Vol. 49, Issue 21, pp. 4088-4095 (2010)
http://dx.doi.org/10.1364/AO.49.004088


View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel moving corner-cube mirror interferometer (MCCMI) is presented. It has neither tilt nor shearing problems. It consists of one moving corner-cube mirror (MCCM), one fixed double-sided mirror (FDSM), one fixed plane mirror, and one beam splitter. The FDSM is a plane-parallel glass plate with both faces coated with high-reflectivity films. The effect of a FDSM tilt is analyzed. The optical path difference (OPD) is created by the straight reciprocating motion of the MCCM, and the OPD value is four times the displacement of the MCCM. The reflection characteristic of the corner-cube mirror (CCM) is analyzed by means of the vector expression, and the formulas of deviation angle of a CCM are derived. The effect of a MCCM deviation angle is analyzed. The new MCCMI is very suitable for high-resolution Fourier- transform infrared spectrometers used for atmospheric sounding.

© 2010 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(260.3160) Physical optics : Interference
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 13, 2010
Revised Manuscript: May 25, 2010
Manuscript Accepted: June 25, 2010
Published: July 19, 2010

Citation
Qinghua Yang, "Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror," Appl. Opt. 49, 4088-4095 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-21-4088


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. W. Stroke, “Photoelectric fringe signal information and range in interferometers with moving mirrors,” J. Opt. Soc. Am. 47, 1097–1103 (1957). [CrossRef]
  2. J. Connes and P. Connes, “Near-infrared planetary spectra by Fourier spectroscopy I. instruments and results,” J. Opt. Soc. Am. 56, 896–910 (1966). [CrossRef]
  3. G. Guelachvili, “Near infrared wide-band spectroscopy with 27 MHz resolution,” Appl. Opt. 16, 2097–2101 (1977). [CrossRef] [PubMed]
  4. D. E. Jennings, R. Hubbard, and J. W. Brault, “Double passing the Kitt Peak 1 m Fourier transform spectrometer,” Appl. Opt. 24, 3438–3440 (1985). [CrossRef] [PubMed]
  5. G. Durry and G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34, 1971–1981(1995). [CrossRef] [PubMed]
  6. G. Guelachvili, “High-accuracy Doppler-limited 106 samples Fourier transform spectroscopy,” Appl. Opt. 17, 1322–1326(1978). [CrossRef] [PubMed]
  7. G. Guelachvili, “Distortion free interferograms in Fourier transform spectroscopy with nonlinear detectors,” Appl. Opt. 25, 4644–4648 (1986). [CrossRef] [PubMed]
  8. Q. Yang, B. Zhao, and R. Zhou, “Novel moving cat’s-eye-pair interferometer,” J. Mod. Opt. 56, 1283–1287(2009). [CrossRef]
  9. E. R. Peck, “Theory of the corner-cube interferometer,” J. Opt. Soc. Am. 38, 1015–1024 (1948). [CrossRef] [PubMed]
  10. E. R. Peck and S. W. Obetz, “Wavelength or length measurement by reversible fringe counting,” J. Opt. Soc. Am. 43, 505–509 (1953). [CrossRef] [PubMed]
  11. M. V. R. K. Murty, “Some more aspects of the Michelson interferometer with cube corners,” J. Opt. Soc. Am. 50, 7–10(1960). [CrossRef]
  12. D. A. Thomas and J. C. Wyant, “Determination of the dihedral angle errors of a corner cube from its Twyman–Green interferogram,” J. Opt. Soc. Am. 67, 467–472 (1977). [CrossRef]
  13. R. L. White, “Performance of an FT-IR with a cube-corner interferometer,” Appl. Spectrosc. 39, 320–326 (1985). [CrossRef]
  14. J. Kauppinen and V.-M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm−1,” Appl. Opt. 30, 2575–2578 (1991). [CrossRef] [PubMed]
  15. J. Kauppinen and P. Saarinen, “Line-shape distortions in misaligned cube corner interferometers,” Appl. Opt. 31, 69–74(1992). [CrossRef] [PubMed]
  16. P. Haschberger and V. Tank, “Optimization of a Michelson interferometer with a rotating retroreflector in optical design, spectral resolution, and optical throughput,” J. Opt. Soc. Am. A. 10, 2338–2345 (1993). [CrossRef]
  17. Q. Yang, R. Zhou, and B. Zhao, “Novel moving-corner-cube-pair interferometer,” J. Opt. A: Pure Appl. Opt. 11, 015505 (2009). [CrossRef]
  18. R. Beer and D. Marjaniemi, “Wavefronts and construction tolerances for a cat’s-eye retroreflector,” Appl. Opt. 5, 1191–1197(1966). [CrossRef] [PubMed]
  19. J. J. Snyder, “Paraxial ray analysis of a cat’s-eye retroreflector,” Appl. Opt. 14, 1825–1828 (1975). [CrossRef] [PubMed]
  20. R. Beer, “Paraxial ray analysis of a cat’s-eye retroreflector: comments,” Appl. Opt. 15, 856–857 (1976). [CrossRef] [PubMed]
  21. R. L. Richardson and P. R. Griffiths, “Design and performance considerations of cat’s-eye retroreflectors for use in open-path Fourier-transform-infrared spectrometry,” Appl. Opt. 41, 6332–6340 (2002). [CrossRef] [PubMed]
  22. W. H. Steel, “On Möbius-band interferometers,” J. Mod. Opt. 11, 211–217 (1964). [CrossRef]
  23. Bomem, Incorporated, interferometers such as Models DA3-002, DA3-01, and DA3-02.
  24. J. Kauppinen, “Double-beam high resolution Fourier spectrometer for the far infrared,” Appl. Opt. 14, 1987–1992(1975). [CrossRef] [PubMed]
  25. J. K. Kauppinen, I. K. Salomaa, and J. O. Partanen, “Carousel interferometer,” Appl. Opt. 34, 6081–6085 (1995). [CrossRef] [PubMed]
  26. J. Kauppinen, J. Heinonen, and I. Kauppinen, “Interferometers based on the rotational motion,” Appl. Spectrosc. Rev. 39, 99–129 (2004). [CrossRef]
  27. H. R. Chandrasekhar, L. Genzel, and J. Kuhl, “Double-beam Fourier spectroscopy with interferometric background compensation,” Opt. Commun. 17, 106–110(1976). [CrossRef]
  28. L. Genzel and J. Kuhl, “A new version of a Michelson interferometer for Fourier transform infrared spectroscopy,” Infrared Phys. 18, 113–120 (1978). [CrossRef]
  29. L. Genzel and J. Kuhl, “Tilt-compensated Michelson interferometer for Fourier transform spectroscopy,” Appl. Opt. 17, 3304–3308 (1978). [CrossRef] [PubMed]
  30. W. H. Steel, “Interferometers for Fourier spectroscopy,” in Aspen International Conference on Fourier Spectroscopy (Air Force Cambridge Research Laboratories, 1970), p. 43.
  31. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited