OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 22 — Aug. 1, 2010
  • pp: 4127–4130

Enhancing coupling efficiency and propagating length for surface plasmon polaritons

Huimin Liang and Jingquan Wang  »View Author Affiliations

Applied Optics, Vol. 49, Issue 22, pp. 4127-4130 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high coupling efficiency and long propagating length technique is suggested for surface plasmon polaritons (SPPs). An attenuated total reflection (ATR) mode is employed to enhance the coupling efficiency by SPPs resonating with the incident light in the SPP launching zone. In the SPP transmitting zone, a step-metal film is embedded in a dielectric to decrease the radiation and absorption losses. Simulated results reveal that an SPP transmitting length of several hundred micrometers can be achieved with high energy. Besides, analyzed results indicate that the fabrication of the device is easy because of its simple structure and large tolerances.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optics at Surfaces

Original Manuscript: May 10, 2010
Revised Manuscript: June 27, 2010
Manuscript Accepted: June 28, 2010
Published: July 21, 2010

Huimin Liang and Jingquan Wang, "Enhancing coupling efficiency and propagating length for surface plasmon polaritons," Appl. Opt. 49, 4127-4130 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. N. A. Janunts and Kh. V. Nerkararyana, “Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79, 299–301 (2001). [CrossRef]
  3. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007). [CrossRef]
  4. B. Alexandra, S. V. Valentyn, B. N. Rasmus, M. Esteban, G. R. Sergio, and I. B. Sergey, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008). [CrossRef]
  5. N. Thomas, L. Kristjan, S. Ildar, and I. B. Sergey, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670(2003). [CrossRef]
  6. I. B. Sergey, N. Thomas, and L. Kristjan, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51–56 (2005). [CrossRef]
  7. J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007). [CrossRef]
  8. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007). [CrossRef]
  9. S. Thomas, I. B. Sergey, and B. Alexandra, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006). [CrossRef]
  10. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  11. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986). [CrossRef]
  12. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  13. S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329(2004). [CrossRef]
  14. T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86, 141105 (2005). [CrossRef]
  15. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005). [CrossRef]
  16. S. Sergei and J. F. M. Olivier, “Resonant tunneling of surface plasmonpolaritons,” Opt. Express 15, 6380–6388 (2007). [CrossRef]
  17. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [CrossRef]
  18. I. M. Mihailo and D. R. Aleksandar, “Determination of the reflection coefficients of laser light of wavelengths λ∈(0.22μm,200μm) from the surface of aluminum using the Lorentz-Drude model,” Appl. Opt. 29, 3479–3483 (1990). [CrossRef]
  19. D. R. Aleksandar, B. D. Aleksandra, M. E. Jovan, and L. M. Marian, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283(1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited