OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 22 — Aug. 1, 2010
  • pp: 4152–4159

Use of Monte Carlo simulations for propagation of light in biomedical tissues

Srilekha Banerjee and Subodh K. Sharma  »View Author Affiliations


Applied Optics, Vol. 49, Issue 22, pp. 4152-4159 (2010)
http://dx.doi.org/10.1364/AO.49.004152


View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In problems relating to light propagation in biomedical tissues, the tissue is generally modeled as a turbid medium and Monte Carlo (MC) simulation is employed to compute quantities such as diffuse reflectance, fluence, and transmittance. Two prescriptions are available in the literature for MC simulations. The first prescription considers all input quantities, including phase function, as an average over the particle size distribution, and the second prescription considers the phase function of each scatterer individually. The two prescriptions have been compared and contrasted in this paper for a given soft tissue model. It is demonstrated that, in general, the two recipes do not yield identical results. The source of this disagreement has been traced.

© 2010 Optical Society of America

OCIS Codes
(290.5890) Scattering : Scattering, stimulated
(290.7050) Scattering : Turbid media
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 29, 2010
Revised Manuscript: June 30, 2010
Manuscript Accepted: July 1, 2010
Published: July 23, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Srilekha Banerjee and Subodh K. Sharma, "Use of Monte Carlo simulations for propagation of light in biomedical tissues," Appl. Opt. 49, 4152-4159 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-22-4152


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. G. Khlebtsov, I. L. Maksimova, V. V. Tuchin, and L. V. Wang, “Introduction to light scattering by biological objects,” in Handbook of Optical Medical Diagnostics, V.V.Tuchin, ed. (SPIE, 2002), pp. 31–168.
  2. V. V. Tuchin, “Light–tissue interactions,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003), pp. 3-1–3-26.
  3. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissues: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998). [CrossRef]
  4. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995). [CrossRef] [PubMed]
  5. K. Sokolov, R. Drezek, A. Dunn, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5, 302–317(1999). [CrossRef] [PubMed]
  6. N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184(2001). [CrossRef]
  7. W. Bauer and C. D. Mackenzie, “Cancer detection on a cell by cell basis using fractal dimension analysis,” Heavy Ion Phys. 14, 39–46 (2001). [CrossRef]
  8. P. Thueler, I. Charvet, F. Bevilacqua, M. S. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge C, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003). [CrossRef] [PubMed]
  9. S. K. Sharma and S. Banerjee S, “Volume concentration and size dependence of diffuse reflectance in a fractal soft tissue model,” Med. Phys. 32, 1767–1174 (2005). [CrossRef] [PubMed]
  10. S. L. Jacques and L. H. Wang “Monte Carlo modeling of light transport in tissues,” in Optical Thermal Response of Laser Irradiated Tissues, A.J.Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 73–100.
  11. S. K. Sharma and S. Banerjee, “Role of approximate phase functions in Monte Carlo simulation of light propagation in tissues,” J. Opt. A: Pure Appl. Opt. 5, 294–302(2003). [CrossRef]
  12. R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” J. Mod. Opt. 47, 103–120(2000). [CrossRef]
  13. B. Gelebart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996). [CrossRef]
  14. J. M. Schmitt and G. Kumar G, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2798 (1998). [CrossRef]
  15. D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on suspension of microspheres with a fractal distribution,” J. Biomed. Opt. 10, 064036 (2005). [CrossRef]
  16. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  17. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438(2005). [CrossRef] [PubMed]
  18. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques S L, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405(2005). [CrossRef] [PubMed]
  19. Y. Liu, Y. L. Kim, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005). [CrossRef] [PubMed]
  20. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530–6539 (2004). [CrossRef] [PubMed]
  21. D. Cote and I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148–163 (2005). [CrossRef] [PubMed]
  22. F. Jallion and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3295 (2003). [CrossRef]
  23. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattered medium,” Appl. Opt. 31, 6535–6546(1992). [CrossRef] [PubMed]
  24. E. Berrocal, I. Meglinski, and M. Jermy, “New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics,” Opt. Express 13, 9181–9195 (2005). [CrossRef] [PubMed]
  25. S. K. Sharma, S. Banerjee, and M. K. Yadav, “Light propagation in a fractal tissue model: a critical study of the phase function,” J. Opt. A: Pure Appl. Opt. 8, 1–7 (2007). [CrossRef]
  26. D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996). [CrossRef] [PubMed]
  27. L. P. Bayvel and A. R. Jones, Electromagnetic Scattering and Its Applications (Applied Science, 1981).
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  29. L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61, 163–170(2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited