OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 22 — Aug. 1, 2010
  • pp: 4188–4192

Optomechanical shape analysis using group theory

Jenny Magnes, Margo Kinneberg, Rahul Khakurel, and Noureddine Melikechi  »View Author Affiliations

Applied Optics, Vol. 49, Issue 22, pp. 4188-4192 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an optomechanical technique using a knife-edge, which is scanned spatially across a beam of light to identify shape-based irradiance. Symmetry groups are identified through linear and rotational scanning signatures of illuminated shapes. The scanning signature is used to classify the shape into a symmetry group. To demonstrate the shape analysis technique, we have classified basic geometric shapes, which belong to the orthogonal and dihedral symmetry groups O 2 , D 2 , D 3 , and D 6 .

© 2010 Optical Society of America

OCIS Codes
(200.1130) Optics in computing : Algebraic optical processing
(200.4740) Optics in computing : Optical processing
(200.4880) Optics in computing : Optomechanics
(230.0230) Optical devices : Optical devices

Original Manuscript: January 25, 2010
Revised Manuscript: May 24, 2010
Manuscript Accepted: May 27, 2010
Published: July 27, 2010

Jenny Magnes, Margo Kinneberg, Rahul Khakurel, and Noureddine Melikechi, "Optomechanical shape analysis using group theory," Appl. Opt. 49, 4188-4192 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. He, X. You, and Y. Yuan, “Texture image retrieval based on non-tensor product wavelet filter banks,” Signal Process. 89, 1501–1510 (2009). [CrossRef]
  2. R. Medina-Carnicer, F. J. Madrid-Cuevas, A. Carmona-Poyato, and R. Muñoz-Salinas, “On candidates selection for hysteresis thresholds in edge detection,” Pattern Recogn. 42, 1284–1296(2009). [CrossRef]
  3. H. Kawasaki and R. Furukawa, “Shape reconstruction and camera self-calibration using cast shadows and scene geometries,” Int. J. Comput. Vision 83, 135–148 (2009). [CrossRef]
  4. G. D. Finlayson, M. S. Drew, and C. Lu, “Entropy minimization for shadow removal,” Int. J. Comput. Vision 85, 35–37 (2009). [CrossRef]
  5. W. Zhou, G. Huang, A. Troy, and M. L. Cadenasso, “Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: a comparison study,” Remote Sens. Environ. 113, 1769–1777 (2009). [CrossRef]
  6. A. Ecker and S. Ullman, “A hierarchical non-parametric method for capturing non-rigid deformations,” Image Vision Comput. 27, 87–98 (2009). [CrossRef]
  7. D. Levi and S. Ullman, “Learning to classify by ongoing feature selection,” Image Vision Comput. 28, 715–723(2010). [CrossRef]
  8. E. Borenstein and S. Ullman, “Combined top-down/bottom-up segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 2109–2125 (2008). [CrossRef] [PubMed]
  9. S. J. Dickinson, R. Bergevin, I. Biederman, J.-O. Eklundh, R. Munck-Fairwood, A. K. Jain, and A. Pentland, “Panel report: the potential of geons for generic 3-D object recognition,” Image Vision Comput. 15, 277–292 (1997). [CrossRef]
  10. F. de Vieilleville and J.-O. Lachaud, “Comparison and improvement of tangent estimators on digital curves,” Pattern Recogn. 42, 1693–1707 (2009). [CrossRef]
  11. I. Cervantes, R. Baumung, A. Molina, T. Druml, J. P. Gutiérrez, J. Sölkner, and M. Valera, “Size and shape analysis of morphofunctional traits in the Spanish Arab horse,” Livest. Sci. 125, 43–49 (2009). [CrossRef]
  12. T. Martin, E. Cohen, and R. M. Kirby, “Volumetric parameterization and trivariate B-spline fitting using harmonic functions,” Comput. Aided Geom. Des. 26, 648–664 (2009). [CrossRef]
  13. R. M. Bolle, J. H. Connell, N. Haas, R. Mohan, and G. Taubin, “VeggieVision: a produce recognition system,” in Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision (IEEE, 1996), pp. 244–251. [CrossRef]
  14. T. Vetter, T. Poggio, and H. H. Bültoff, “The importance of symmetry and virtual views in three-dimensional object recognition,” Curr. Biol. 4, 18–23 (1994). [CrossRef] [PubMed]
  15. S. J. Dickinson, R. Bergevin, I. Biederman, J. Eklundh, R. Munk-Fairwood, A. K. Jain, and A. Pentland, “Panel report: the potential of geons for generic 3-D object recognition,” Image Vision Comput. 15, 277–292 (1997). [CrossRef]
  16. J. Magnes, G. Schwarz, J. Hartke, D. Burt, and N. Melikechi, “Optomechanical integration method for finite integrals,” Appl. Opt. 46, 6918–6922 (2007). [CrossRef] [PubMed]
  17. D. Burt, J. Magnes, G. Schwarz, and J. Hartke, “Teaching integration through a physical phenomenon,” Primus 18, 283 (2008). [CrossRef]
  18. J. Magnes, T. David, R. Khakurel, M. Kinneberg, D. Olson, and N. Melikechi, “Shape recognition through opto-mechanical scanning,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FMJ5.
  19. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22, 3406–3410 (1983). [CrossRef] [PubMed]
  20. R. L. McCally, “Measurement of Gaussian beam parameters,” Appl. Opt. 23, 2227 (1984). [CrossRef] [PubMed]
  21. O. Wolfgang, “Application of optical shape measurement for the nondestructive evaluation of complex objects,” Opt. Eng. 39, 232–243 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited