OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 22 — Aug. 1, 2010
  • pp: 4217–4227

Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air

Benjamin Witschas, Maria O. Vieitez, Eric-Jan van Duijn, Oliver Reitebuch, Willem van de Water, and Wim Ubachs  »View Author Affiliations


Applied Optics, Vol. 49, Issue 22, pp. 4217-4227 (2010)
http://dx.doi.org/10.1364/AO.49.004217


View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. We report on spontaneous Rayleigh–Brillouin scattering measurements in the ultraviolet at a scattering angle of 90 ° on N 2 and on dry and moist air. The measured line shapes are compared to the Tenti S6 model, which is shown to describe the scattering line shapes in air at atmospheric pressures with small but significant deviations. We demonstrate that the line profiles of N 2 and air under equal pressure and temperature conditions differ significantly, and that this difference can be described by the S6 model. Moreover, we show that even a high water vapor content in air up to a volume fraction of 3.6 vol. % has no influence on the line shape of the scattered light. The results are of relevance for the future spaceborne lidars on ADM-Aeolus (Atmospheric Dynamics Mission) and EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer).

© 2010 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.5830) Scattering : Scattering, Brillouin
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: April 7, 2010
Revised Manuscript: June 17, 2010
Manuscript Accepted: June 23, 2010
Published: July 27, 2010

Citation
Benjamin Witschas, Maria O. Vieitez, Eric-Jan van Duijn, Oliver Reitebuch, Willem van de Water, and Wim Ubachs, "Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air," Appl. Opt. 49, 4217-4227 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-22-4217


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535(1981). [CrossRef] [PubMed]
  2. R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001). [CrossRef]
  3. C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001). [CrossRef]
  4. G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968). [CrossRef]
  5. B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009). [CrossRef] [PubMed]
  6. European Space Agency, “Earth Clouds, Aerosols, and Radiation Explorer,” ESA SP-1279(1) (European Space Research and Technology Centre, 2004).
  7. A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008). [CrossRef]
  8. P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).
  9. European Space Agency, “ADM-Aeolus," science report, ESA SP-1311 (European Space Research and Technology Centre, 2008).
  10. A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005). [CrossRef]
  11. D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008). [CrossRef]
  12. N. Cezard, A. Dolfi-Bouteyre, J. Huignard, and P. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355nm Rayleigh-Mie lidar,” Appl. Opt. 48, 2321–2332 (2009). [CrossRef] [PubMed]
  13. C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158 (1972). [CrossRef]
  14. G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  15. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008). [CrossRef] [PubMed]
  16. J. Hair, L. Caldwell, D. Krueger, and C. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001). [CrossRef]
  17. J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008). [CrossRef] [PubMed]
  18. B. J. Rye, “Molecular backscatter heterodyne lidar: a computational evaluation,” Appl. Opt. 37, 6321–6328 (1998). [CrossRef]
  19. A. T. Young and G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983). [CrossRef] [PubMed]
  20. T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966). [CrossRef]
  21. E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh-Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971). [CrossRef]
  22. R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976). [CrossRef]
  23. J. A. Lock, R. G. Seasholtz, and W. T. John, “Rayleigh-Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field,” Appl. Opt. 31, 2839–2848 (1992). [CrossRef] [PubMed]
  24. Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976). [CrossRef]
  25. V. Ghaem-Maghami and A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980). [CrossRef]
  26. L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981). [CrossRef]
  27. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002). [CrossRef] [PubMed]
  28. X. Pan, N. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004). [CrossRef]
  29. A. Sugawara and S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967). [CrossRef]
  30. H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound—update,” J. Acoust. Soc. Am. 88, 2019–2021 (1990). [CrossRef]
  31. H. E. Bass, L. C. Sutherland, J. Piercy, and L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W.P.Mason and R.N.Thurston, eds. (Academic, 1984), Vol. 17, pp. 145–232.
  32. O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Oceanic Technol. 26, 2501–2515 (2009). [CrossRef]
  33. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233(2000). [CrossRef]
  34. L. Fabelinski, The Molecular Scattering of Light (Plenum, 1968).
  35. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980).
  36. “U.S. standard atmosphere” (U.S. Government Printing Office, 1962).
  37. T. Gombosi, Gaskinetic Theory (Cambridge Univ. Press, 1994). [CrossRef]
  38. N. Taxman, “Classical theory of transport phenomena in dilute polyatomic gases,” Phys. Rev. 110, 1235–1239 (1958). [CrossRef]
  39. C. S. Wang-Chang, G. E. Uhlenbeck, and J. de Boer, “The heat conductivity and viscosity of polyatomic gases,” in Studies in Statistical Mechanics, J.de Boer and G.E.Uhlenbeck, eds. (North-Holland, 1964), pp. 242–268.
  40. R. F. Snider, “Quantum-mechanical modified Boltzmann equation for degenerate internal states,” J. Chem. Phys. 32, 1051–1060 (1960). [CrossRef]
  41. W. E. Meador, G. A. Mines, and L. W. Townsend, “Bulk viscosity as a relaxation parameter: fact or fiction?,” Phys. Fluids 8, 258–261 (1996). [CrossRef]
  42. R. E. Graves and B. M. Argow, “Bulk viscosity: past to present,” J. Thermophys. Heat Transfer 13, 337–342 (1999). [CrossRef]
  43. W. A. Wakeham, “Transport properties of polyatomic gases,” Int. J. Thermophys. 7, 1–15 (1986). [CrossRef]
  44. G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2, 2252–2254 (1990). [CrossRef]
  45. G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300K,” Physica 64, 278–288 (1973). [CrossRef]
  46. K. Rah and B. C. Eu, “Density and temperature dependence of the bulk viscosity of molecular liquids: carbon dioxide and nitrogen,” J. Chem. Phys. 114, 10436–10447 (2001). [CrossRef]
  47. W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).
  48. M. O. Vieitez, E.-J.van Duijn, W.van de Water, and W.Ubachs are preparing a manuscript to be called “A UV laser based spectrometer for measuring spontaneous Rayleigh-Brillouin scattering.”
  49. G. Hernandez, Fabry-Perot Interferometers (Cambridge Univ. Press, 1988).
  50. J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, 1989).
  51. W. van de Water, A.S.Meijer, A.S.de Wijn, M.Peters, and N.J.Dam, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. (to be published).
  52. T.D.Rossing, ed., Springer Handbook of Acoustics (Springer, 2007). [CrossRef]
  53. D.R.Lide, ed., CRC Handbook of Chemistry and Physics, 82th ed. (CRC, 2002).
  54. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009). [CrossRef]
  55. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007). [CrossRef] [PubMed]
  56. M. McGill, W. Skinner, and T. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1932 (1997). [CrossRef] [PubMed]
  57. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005). [CrossRef] [PubMed]
  58. J. R. Bonatto and W. Marquez, “Kinetic model analysis of light scattering in binary mixtures of monoatomic ideal gases,” J. Stat. Mech. 9, 09014 (2005). [CrossRef]
  59. W. van de Water, M.O.Vieitez, E.-J.van Duijn, W.Ubachs, A.Meijer, A.S.de Wijn, N.J.Dam, and B.Witschas, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases, and gas mixtures,” Phys. Rev. A (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited