OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 22 — Aug. 1, 2010
  • pp: 4255–4261

Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays

Akifumi Ogiwara, Minoru Watanabe, Takayuki Mabuchi, and Fuminori Kobayashi  »View Author Affiliations


Applied Optics, Vol. 49, Issue 22, pp. 4255-4261 (2010)
http://dx.doi.org/10.1364/AO.49.004255


View Full Text Article

Enhanced HTML    Acrobat PDF (890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic polymer-dispersed liquid-crystal (HPDLC) memory using liquid-crystal composites is proposed for new optical information processing. Formation of HPDLC memory using a photomask is discussed for parallel programmability to realize fast reconfiguration of optically reconfigurable gate arrays (ORGAs). The defect tolerance of HPDLC memory is investigated to clarify the defect limitation of holographic configurations using ORGAs. Experimental results show that the noise ratio less than 15% applied to HPDLC memory rarely affects its diffraction pattern or a reconfiguration context.

© 2010 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers

ToC Category:
Holography

History
Original Manuscript: April 27, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 2, 2010
Published: July 28, 2010

Citation
Akifumi Ogiwara, Minoru Watanabe, Takayuki Mabuchi, and Fuminori Kobayashi, "Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays," Appl. Opt. 49, 4255-4261 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-22-4255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sanyal, P. Bandyopadhyay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599(1998). [CrossRef]
  2. J. E. Ford, F. Yu, K. Urquhart, and Y. Fainman, “Polarization selective computer-generated holograms,” Opt. Lett. 18, 456–458 (1993). [CrossRef] [PubMed]
  3. U. D. Zeitner, B. Schnabel, E.-B. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal stripe grating pixels,” Appl. Opt. 38, 2177–2181 (1999). [CrossRef]
  4. F. Gori, “Measuring Stokes parameters by means of polarization grating,” Opt. Lett. 24, 584–586 (1999). [CrossRef]
  5. S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D 38, 3371–3375 (2005). [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994). [CrossRef]
  7. T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392(1997). [CrossRef]
  8. A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999). [CrossRef]
  9. K. Kato, T. Hisaki, and M. Date, “Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices,” Jpn. J. Appl. Phys. 38, 805–808 (1999). [CrossRef]
  10. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000). [CrossRef]
  11. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000). [CrossRef]
  12. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000). [CrossRef]
  13. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001). [CrossRef]
  14. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002). [CrossRef]
  15. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003(2002). [CrossRef]
  16. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002). [CrossRef]
  17. M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002). [CrossRef]
  18. Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004). [CrossRef]
  19. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004). [CrossRef]
  20. M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515(2006). [CrossRef]
  21. N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008). [CrossRef] [PubMed]
  22. D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array—perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008). [CrossRef]
  23. T. Mabuchi, K. Miyashiro, M. Watanabe, and A. Ogiwara, “Fault tolerance of a dynamic optically reconfigurable gate array with a one-time writable volume holographic memory,” in 2009 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2009) (IEEE, 2009), pp. 917–920. [CrossRef]
  24. A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.
  25. M. Nakajima and M. Watanabe, “Optical buffering technique under a space radiation environment,” Opt. Lett. 34, 3719–3721 (2009). [CrossRef] [PubMed]
  26. A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007). [CrossRef]
  27. A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008). [CrossRef]
  28. A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited