OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 22 — Aug. 1, 2010
  • pp: 4278–4283

Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders

P. Terrier, J. M. Charbois, and V. Devlaminck  »View Author Affiliations


Applied Optics, Vol. 49, Issue 22, pp. 4278-4283 (2010)
http://dx.doi.org/10.1364/AO.49.004278


View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nowadays liquid-crystal variable retarders (LCVRs) are widely used in optical systems because of their capacity to provide a controlled variable optical retardance by means of an applied voltage, without the need of any moving mechanical part. Nevertheless, the main disadvantages of these components, reported by users in several papers, are the necessity of using a temperature control system for precise measurements, the degradation under UV irradiation, and the lack of spatial retardance homogeneity. In this paper, we report that the orientation of the LCVR fast axis may also be dependent on applied voltage. The consideration of this phenomenon improves the performances of an imaging polarimeter. In this work, we present the problem, introduce the method of calibration that was used for the experiment, and discuss the results.

© 2010 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(150.1488) Machine vision : Calibration
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 10, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 2, 2010
Published: July 29, 2010

Citation
P. Terrier, J. M. Charbois, and V. Devlaminck, "Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders," Appl. Opt. 49, 4278-4283 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-22-4278


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Shurcliff, Polarized Light (Harvard U. Press, 1962).
  2. L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991). [CrossRef]
  3. D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 982–987. [CrossRef]
  4. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004). [CrossRef] [PubMed]
  5. P. Terrier, V. Devlaminck, and J. M. Charbois, “Segmentation of rough surfaces using a polarization imaging system,” J. Opt. Soc. Am. A 25, 423–430 (2008). [CrossRef]
  6. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  7. O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006). [CrossRef] [PubMed]
  8. J. E. Wolfe and R. A. Chipman, “Polarimetric characterization of liquid-crystal-on-silicon panels,” Appl. Opt. 45, 1688–1703(2006). [CrossRef] [PubMed]
  9. J. S. Baba and P. R. Boudreaux, “Wavelength, temperature, and voltage dependent calibration of a nematic liquid crystal multispectral polarization generating device,” Appl. Opt. 46, 5539–5544 (2007). [CrossRef] [PubMed]
  10. R. L. Heredero, N. Uribe-Patarroyo, T. Belenguer, G. Ramos, A. Sánchez, M. Reina, V. Martínez Pillet, and A. Álvarez-Herrero, “Liquid-crystal variable retarders for aerospace polarimetry applications,” Appl. Opt. 46, 689–698(2007). [CrossRef] [PubMed]
  11. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004). [CrossRef] [PubMed]
  12. J. S. Tyo, “Noise equalization in Stokes parameter obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  13. A. De Martino, Y. Kim, E. Garcia-Caurel, B. Laude, and B. Drevillon, “Optimized mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003). [CrossRef] [PubMed]
  14. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999). [CrossRef]
  15. J. E. Ahmad and Y. Takakura, “Error analysis for rotating active Stokes–Mueller imaging polarimeters,” Opt. Lett. 31, 2858–2860 (2006). [CrossRef] [PubMed]
  16. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216–222 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited