OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 22 — Aug. 1, 2010
  • pp: 4326–4330

Single-step replication of a highly integrated PDMS optofluidic analysis system

Martin Amberg, Sebastian Stoebenau, and Stefan Sinzinger  »View Author Affiliations

Applied Optics, Vol. 49, Issue 22, pp. 4326-4330 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (538 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micromilling is a promising technology for the fabrication of surface profiles with optical quality. We present a highly integrated optofluidic system made of polydimethylsiloxane (PDMS). The system is replicated in a single-step process from a micromilled polymethyl methacrylate master mold. It already includes the reservoirs, the channel system, as well as the optical interconnect surfaces for high numerical aperture objectives. We demonstrate the potential of this approach by laser-based three-dimensional optical manipulation within the replicated system. To our knowledge, this is the first time that a PDMS membrane is used as a well-defined channel wall for an optical trapping setup.

© 2010 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(180.0180) Microscopy : Microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Tweezers or Optical Manipulation

Original Manuscript: February 26, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: July 2, 2010
Published: July 30, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Martin Amberg, Sebastian Stoebenau, and Stefan Sinzinger, "Single-step replication of a highly integrated PDMS optofluidic analysis system," Appl. Opt. 49, 4326-4330 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Svoboda, P. P. Mitra, and S. M. Block, “Fluctuation analysis of motor protein movement and single enzyme-kinetics,” Proc. Natl. Acad. Sci. USA 91, 11782–11786 (1994). [CrossRef] [PubMed]
  2. J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004). [CrossRef] [PubMed]
  3. E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksör, S. Hohmann, T. Nyström, and D. Hanstorp, “A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes,” Lab Chip 7, 71–76 (2007). [CrossRef]
  4. A. Ashkin, J. M. Dziediz, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  5. A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8, 1116–1120 (2008). [CrossRef] [PubMed]
  6. C. S. Effenhauser, G. J. M. Bruin, A. Paulus, and M. Ehrat, “Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips,” Anal. Chem. 69, 3451–3457 (1997). [CrossRef] [PubMed]
  7. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998). [CrossRef] [PubMed]
  8. J. Liu, M. Enzelsberger, and S. Quake, “A nanoliter rotary device for polymerase chain reaction,” Electrophoresis 23, 1531–1536 (2002). [CrossRef] [PubMed]
  9. P. G. Shao, J. A. van Kan, K. Ansari, A. A. Bettiol, and F. Watt, “Poly (dimethyl siloxane) micro/nanostructure replication using proton beam written masters,” Nucl. Instrum. Methods Phys. Res. B 260, 479–482 (2007). [CrossRef]
  10. S. Stoebenau, M. Amberg, and S. Sinzinger, “Ultraprecision micromilling of freeform optical elements for planar micro optical systems integration,” Proc. SPIE 6992, 699207 (2008). [CrossRef]
  11. S. Stoebenau, M. Amberg, and S. Sinzinger, “Micromilling for the fabrication of complex optical microsystems,” in Proceedings of the Euspen 10th International Conference (Copy and Druck, 2010), pp. 412–415.
  12. E. Brinksmeier and L. Autschbach, “Ball-end milling of free-form surfaces for optical mold inserts,” in Proceedings of the ASPE 19th Annual Meeting (ASPE, 2004).
  13. M. L. Hupert, W. J. Guy, S. D. Llopis, C. Situma, S. Rani, D. E. Nikitopoulos, and S. A. Soper, “High-precision micromilling for low-cost fabrication of metal mold masters,” Proc. SPIE 6112, 61120B (2006). [CrossRef]
  14. A.-C. Wei, M. Gruber, M. Jarczynski, J. Jahns, and H.-P. D. Shieh, “Plastic planar-integrated free-space optical interconnector,” Jpn. J. Appl. Phys. 46, 5504–5507 (2007). [CrossRef]
  15. S. Risse, A. Gebhardt, R. Steinkopf, and V. Giggel, “NiP plated mirrors for astronomy and space,” in Proceedings of the Euspen 7th International Conference (Copy and Druck, 2007).
  16. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30, 1707–1709 (2005). [CrossRef] [PubMed]
  17. A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs, M. Winterschladen, A. Demmer, S. Lange, T. Bergs, M. Merz, and F. Niehaus, “Development of a compression molding process for three-dimensional tailored free-form glass optics,” Appl. Opt. 45, 6511–6518 (2006). [CrossRef] [PubMed]
  18. M. Hofmann, S. Hauguth-Frank, V. Lebedev, O. Ambacher, and S. Sinzinger, “Sapphire-GaN-based planar integrated free-space optical system,” Appl. Opt. 47, 2950–2955 (2008). [CrossRef] [PubMed]
  19. M. Stubenrauch, U. Fröber, D. Voges, C. Schilling, M. Hoffmann, and H. Witte, “A modular BioMEMS platform for new procedures and experiments in tissue engineering,” J. Micromech. Microeng. 19, 074013 (2009). [CrossRef]
  20. J. Hampl, F. Weise, U. Fernekorn, C. Hildmann, C. Augspurger, M. Klett, A. Läffert, and A. Schober, “Integrierter Mikrobioreaktor zur parallelen 3D-Zellkulturführung,” in Proc. Mikrosystemtechnik-Kongress 2009 (VDE Verlag GmbH, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited