OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4331–4334

Coherent optical ultrasound detection with rare-earth ion dopants

Jian Wei Tay, Patrick M. Ledingham, and Jevon J. Longdell  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4331-4334 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe theoretical and experimental demonstration for optical detection of ultrasound using a spectral hole engraved in cryogenically cooled rare-earth ion-doped solids. Our method utilizes the dispersion effects due to the spectral hole to perform phase-to-amplitude modulation conversion. Like previous approaches using spectral holes, it has the advantage of detection with large étendue. The method also has the benefit that high sensitivity can be obtained with moderate absorption contrast for the spectral holes.

© 2010 Optical Society of America

OCIS Codes
(110.7170) Imaging systems : Ultrasound
(190.0190) Nonlinear optics : Nonlinear optics
(260.2030) Physical optics : Dispersion

ToC Category:
Imaging Systems

Original Manuscript: May 21, 2010
Revised Manuscript: July 5, 2010
Manuscript Accepted: July 6, 2010
Published: August 3, 2010

Jian Wei Tay, Patrick M. Ledingham, and Jevon J. Longdell, "Coherent optical ultrasound detection with rare-earth ion dopants," Appl. Opt. 49, 4331-4334 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Stoessel, N. Krohn, K. Pfleiderer, and G. Busse, “Air-coupled ultrasound inspection of various materials,” Ultrasonics 40, 159–163 (2002). [CrossRef] [PubMed]
  2. R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999); and references therein. [CrossRef]
  3. C. B. Scruby and L. E. Drain, Laser Ultrasonics (Adam Hilger, 1990).
  4. H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004). [CrossRef]
  5. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966). [CrossRef] [PubMed]
  6. J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985). [CrossRef]
  7. J.-P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry,” Appl. Phys. Lett. 55, 1612–1614 (1989). [CrossRef]
  8. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991). [CrossRef]
  9. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004). [CrossRef] [PubMed]
  10. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042 (2007); and references therein. [CrossRef] [PubMed]
  11. S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010); and references therein. [CrossRef] [PubMed]
  12. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005). [CrossRef] [PubMed]
  13. N. Korneev, P. Rodríguez-Montero, and O. Benavides, “Rubidium vapor holography for noncontact adaptive detection of ultrasound,” Opt. Lett. 34, 1964–1966 (2009). [CrossRef] [PubMed]
  14. S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001). [CrossRef]
  15. Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008). [CrossRef]
  16. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010). [CrossRef] [PubMed]
  17. R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  18. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef] [PubMed]
  19. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef] [PubMed]
  20. J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004). [CrossRef]
  21. B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11444–11465 (2007). [CrossRef] [PubMed]
  22. T. Böttger, “Laser frequency stabilization to spectral hole burning frequency references in erbium-doped crystals: material and device optimization,” Ph.D. thesis (Montana State University, 2002).
  23. W. Farr, J. W. Tay, P. M. Ledingham, D. Korystov, and J. J. Longdell, “Hybrid optical and electronic laser locking using spectral hole burning” (manuscript in preparation)..

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited