OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4343–4354

Multi-projection fluorescence optical tomography using a handheld-probe-based optical imager: phantom studies

Jiajia Ge, Sarah J. Erickson, and Anuradha Godavarty  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4343-4354 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A handheld-probe-based optical imager has recently been developed toward three-dimensional tomography. In this study, the improvement of target depth recovery was demonstrated using a multi-projection technique on large slab phantoms using 0.45 cc fluorescing target(s) (with 1 0 contrast ratio) of 1.5 to 2.5 cm deep. Tomographic results using single- and multi- (here dual) projection measurements (with and without a priori information of target location) were compared. In all experimental cases, the use of multi-projection measurements along with a priori information recovered target depth and location closer to their true values, demonstrating its applicability for clinical translation.

© 2010 Optical Society of America

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6960) Medical optics and biotechnology : Tomography
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 18, 2010
Revised Manuscript: July 7, 2010
Manuscript Accepted: July 7, 2010
Published: August 4, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Jiajia Ge, Sarah J. Erickson, and Anuradha Godavarty, "Multi-projection fluorescence optical tomography using a handheld-probe-based optical imager: phantom studies," Appl. Opt. 49, 4343-4354 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997). [CrossRef]
  2. B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923–924 (2005). [CrossRef] [PubMed]
  3. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000). [CrossRef]
  4. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001). [CrossRef] [PubMed]
  5. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004). [CrossRef] [PubMed]
  6. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004). [CrossRef] [PubMed]
  7. N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004). [CrossRef] [PubMed]
  8. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005). [CrossRef] [PubMed]
  9. B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77, 064301 (2006). [CrossRef]
  10. K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672–2685 (2005). [CrossRef]
  11. K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117. [CrossRef]
  12. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czemiecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30, 2915–2917 (2005). [CrossRef] [PubMed]
  13. Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005). [CrossRef] [PubMed]
  14. B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014(2007). [CrossRef] [PubMed]
  15. J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008). [CrossRef] [PubMed]
  16. V. A. Markel and J. C. Schotland, “Dual-projection optical diffusion tomography,” Opt. Lett. 29, 2019–2021 (2004). [CrossRef] [PubMed]
  17. V. A. Markel and J. C. Schotland, “Multiple projection optical diffusion tomography with plane wave illumination,” Phys. Med. Biol. 50, 2351–2364 (2005). [CrossRef] [PubMed]
  18. T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007). [CrossRef] [PubMed]
  19. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections,” Opt. Lett. 32, 382–384 (2007). [CrossRef] [PubMed]
  20. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003). [CrossRef] [PubMed]
  21. A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004). [CrossRef] [PubMed]
  22. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006). [CrossRef] [PubMed]
  23. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193–195(2006). [CrossRef] [PubMed]
  24. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007). [CrossRef] [PubMed]
  25. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340R (2007). [CrossRef]
  26. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three dimensional bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001). [CrossRef] [PubMed]
  27. S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010). [CrossRef] [PubMed]
  28. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005). [CrossRef] [PubMed]
  29. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited