OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4355–4361

Form birefringence in intrinsic birefringent media possessing a subwavelength structure

Akira Emoto, Masaya Nishi, Makoto Okada, Sayaka Manabe, Shinji Matsui, Nobuhiro Kawatsuki, and Hiroshi Ono  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4355-4361 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (682 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate optical birefringence originating from subwavelength structures in intrinsic birefringent media. Assuming alternating layers of isotropic and anisotropic materials, the propagation of optical waves is simulated on the basis of the finite difference time domain method. Optical polarization changes throughout the structure reveal the birefringence of the layered structure as a whole. In addition, the birefringence is also analyzed on the basis of effective medium theory. The results indicate that the optical birefringence of the structure as a whole can be modified by the magnitude and direction of the intrinsic birefringence of the anisotropic layers. This theoretical prediction will be useful for micro- and nanofabrication in optical devices.

© 2010 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.2065) Physical optics : Effective medium theory
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: May 10, 2010
Manuscript Accepted: July 5, 2010
Published: August 4, 2010

Akira Emoto, Masaya Nishi, Makoto Okada, Sayaka Manabe, Shinji Matsui, Nobuhiro Kawatsuki, and Hiroshi Ono, "Form birefringence in intrinsic birefringent media possessing a subwavelength structure," Appl. Opt. 49, 4355-4361 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2006), pp. 837–840.
  2. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), pp. 205–208.
  3. A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67, 438–447 (1977). [CrossRef]
  4. C. Ochiai, O. Yavas, M. Takai, A. Hosono, and S. Okuda, “Fabrication process of field emitter arrays using focused ion and electron beam induced reaction,” J. Vac. Sci. Technol. B 19, 933–935 (2001). [CrossRef]
  5. J. Schrauwen, F. V. Laere, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides,” IEEE Photon. Tech. Lett. 19, 816–818 (2007). [CrossRef]
  6. A. G. Lopez and H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt. 40, 2068–2075 (2001). [CrossRef]
  7. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995). [CrossRef]
  8. S. Matsui, Y. Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, H. Namatsu, and M. Komuro, “Room-temperature nanoimprint and nanotransfer printing using hydrogen silsequioxane,” J. Vac. Sci. Technol. B 21, 688–692 (2003). [CrossRef]
  9. R. C. Gauthier and K. Mnaymneh, “Photonic band gap properties of 12-fold quasicrystal determined through FDTD analysis,” Opt. Express 13, 1985–1998 (2005). [CrossRef] [PubMed]
  10. C. Oh and M. J. Escuti, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express 14, 11870–11884 (2006). [CrossRef] [PubMed]
  11. S. Tanaka, M. Nakano, M. Umeda, K. Ito, S. Nakamura, and Y. Hatamura, “Simulation of near-field photolithography using the finite-difference time-domain method,” J. Appl. Phys. 89, 3547–3553 (2001). [CrossRef]
  12. B. Wang, J. Jiang, and G. P. Nordin, “Systematic design process for slanted grating couplers,” Appl. Opt. 45, 6223–6226 (2006). [CrossRef] [PubMed]
  13. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695–2703 (1994). [CrossRef]
  14. Y. Ono, Y. Kimura, Y. Ohota, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987). [CrossRef] [PubMed]
  15. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993). [CrossRef] [PubMed]
  16. R. Brauer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33, 7875–7882 (1994). [CrossRef] [PubMed]
  17. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997). [CrossRef] [PubMed]
  18. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999). [CrossRef] [PubMed]
  19. D.-E. Yi, Y.-B. Yan, H.-T. Liu, S.-L., and G.-F. Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49–55 (2003). [CrossRef]
  20. C. Yang and P. Yeh, “Artificial uniaxial and biaxial dielectrics with the use of photoinduced gratings,” J. Appl. Phys. 81, 23–29 (1997). [CrossRef]
  21. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002). [CrossRef]
  22. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996). [CrossRef] [PubMed]
  23. W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, and Y. Ichioka, “Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures,” Appl. Opt. 41, 96–100 (2002). [CrossRef] [PubMed]
  24. M. Fujimoto, Y. Okuno, and T. Matsuda, “Numerical evaluation of polarization-selective characteristics of a binary relief grating with subwavelength structures,” Opt. Rev. 6, 501–506 (1999). [CrossRef]
  25. U. Levy, M. Nezhad, H.-C. Kim, C.-H. Tsai, L. Ping, and Y. Fainman, “Implementation of a graded-index medium by use of subwavelength structures with graded fill factor, ” J. Opt. Soc. Am. A 22, 724–733 (2005). [CrossRef]
  26. G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064,” Opt. Lett. 33, 2782–2784 (2008). [CrossRef] [PubMed]
  27. C.-W. Han and R. K. Kostuk, “Enhanced phase shift in a zeroth-order beam from subwavelength grating structures formed in uniaxial birefringent materials,” J. Opt. Soc. Am. A 13, 1728–1736 (1996). [CrossRef]
  28. G. Campbell and R. K. Kostuk, “Effective-medium theory of sinusoidally modulated volume holograms,” J. Opt. Soc. Am. A 12, 1113–1117 (1995). [CrossRef]
  29. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  30. P. Lalanne and J.-P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851 (1998). [CrossRef]
  31. H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2, 92–99 (1995). [CrossRef]
  32. I. Richter, P.-C. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995). [CrossRef] [PubMed]
  33. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. Mag. 14, 302–307 (1966). [CrossRef]
  34. J.-P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure interaction problems,” IEEE Trans. Antennas Propag. Mag. 44, 110–117 (1996). [CrossRef]
  35. A. Taflove and S. C. Gedne, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  36. E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000). [CrossRef]
  37. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007). [CrossRef]
  38. H. Ono, T. Sekiguchi, A. Emoto, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47, 7963–7967 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited