OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4362–4366

Detection of explosives based on surface-enhanced Raman spectroscopy

Hainer Wackerbarth, Christian Salb, Lars Gundrum, Matthias Niederkrüger, Konstantin Christou, Volker Beushausen, and Wolfgang Viöl  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4362-4366 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (656 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study we present a device based on surface-enhanced Raman scattering (SERS) for the detection of airborne explosives. The explosives are resublimated on a cooled nanostructured gold substrate. The explosives trinitrotoluene (TNT) and triacetone triperoxide (TATP) are used. The SERS spectrum of the explosives is analyzed. Thus, TNT is deposited from an acetonitrile solution on the gold substrate. In the case of TATP, first the bulk TATP Raman spectrum was recorded and compared with the SERS spectrum, generated by deposition out of the gas phase. The frequencies of the SERS spectrum are hardly shifted compared to the spectrum of bulk TATP. The influence of the nanostructured gold substrate temperature on the signals of TATP was studied. A decrease in temperature up to 200 K increased the intensities of the TATP bands in the SERS spectrum; below 200 K , the TATP fingerprint disappeared.

© 2010 Optical Society of America

OCIS Codes
(300.6450) Spectroscopy : Spectroscopy, Raman
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:

Original Manuscript: February 10, 2010
Revised Manuscript: April 24, 2010
Manuscript Accepted: April 30, 2010
Published: August 4, 2010

Hainer Wackerbarth, Christian Salb, Lars Gundrum, Matthias Niederkrüger, Konstantin Christou, Volker Beushausen, and Wolfgang Viöl, "Detection of explosives based on surface-enhanced Raman spectroscopy," Appl. Opt. 49, 4362-4366 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003). [CrossRef] [PubMed]
  2. I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995). [CrossRef]
  3. M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength,” Vibr. Spectrosc. 38, 17–28 (2005). [CrossRef]
  4. F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005). [CrossRef]
  5. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  6. K. M. Spencer, J. M. Sylvia, J. A. Janni, and J. D. Klein, “Advances in landmine detection using surface-enhanced raman spectroscopy,” Proc. SPIE 3710, 373–399 (1999). [CrossRef]
  7. K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004). [CrossRef]
  8. F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005). [CrossRef] [PubMed]
  9. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14, 847–857(2006). [CrossRef] [PubMed]
  10. X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008). [CrossRef]
  11. V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997). [CrossRef]
  12. P. Jacob, B. Wehling, W. Hill, and D. Klockow, “Feasibility study of Raman spectroscopy as a tool to investigate the liquid-phase chemistry of aliphatic organic peroxides,” Appl. Spectrosc. 51, 74–80 (1997). [CrossRef]
  13. G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, 3rd ed. (Wiley, 2001).
  14. B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008). [CrossRef]
  15. J. Oxley, J. Smith, J. Brady, F. Dunikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62, 906–915(2008). [CrossRef] [PubMed]
  16. M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  17. Y. S. Pang, H. J. Hwang, and M. S. Kim, “Reversible temperature dependence in surface-enhanced Raman scattering of 1-propanethiol adsorbed on a silver island film,” J. Phys. Chem 102, 7203–7209 (1998). [CrossRef]
  18. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023 (1980). [CrossRef]
  19. H. P. Chiang, P. T. Leung, and W. S. Tse, “The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures,” J. Chem. Phys. 108, 2659–2660 (1998). [CrossRef]
  20. H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate—temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited