OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4427–4433

Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector

William T. Buttler and Steven K. Lamoreaux  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4427-4433 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (940 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.

© 2010 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 25, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: July 10, 2010
Published: August 6, 2010

William T. Buttler and Steven K. Lamoreaux, "Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector," Appl. Opt. 49, 4427-4433 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958). [CrossRef]
  2. H. Cummins, N. Knable, L. Gampel, and Y. Yeh, “Frequency shifts in light diffracted by ultrasonic waves in liquid media,” Appl. Phys. Lett. 2, 62–64 (1963). [CrossRef]
  3. H. Z. Cummins, N. Knable, and Y. Yeh, “Spurious harmonic generation in optical heterodyning,” Appl. Opt. 2, 823–825(1963). [CrossRef]
  4. Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He─Ne laser,” Appl. Phys. Lett. 4, 176–178(1964). [CrossRef]
  5. J. W. Forman, Jr., E. W. George, and R. D. Lewis, “Measurement of localized fluid flow velocities in gasses with a laser Doppler flowmeter,” Appl. Phys. Lett. 7, 77–78 (1965). [CrossRef]
  6. L. M. Barker and R. E. Hollenbach, “Interferometry technique for measuring the dynamic mechanical properties of materials,” Rev. Sci. Instrum. 36, 1617–1620 (1965). [CrossRef]
  7. L. M. Barker, Behavior of Dense Media under High Dynamic Pressures (Gordon & Breach, 1968), p. 483.
  8. L. M. Barker and Hollenbach, “Laser interferometry for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972). [CrossRef]
  9. W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Mod. Instrum. 50, 73–78 (1979). [CrossRef]
  10. L. Levin, D. Tzach, and J. Shamir, “Fiber optic velocity interferometer with very short coherence length light source,” Rev. Sci. Instrum. 67, 1434–1437 (1996). [CrossRef]
  11. L. Fabiny and A. D. Kersey, “Interferometric fiber-optic Doppler velocimeter with high-dynamic range,” IEEE Photon. Technol. Lett. 9, 79–81 (1997). [CrossRef]
  12. W. T. Buttler, S. K. Lamoreaux, F. G. Omenetto, and J. R. Torgerson, “Optical velocimetry,” arXiv:0409073v1(2004).
  13. O. T. Strand, D. R. Goosman, C. Martinex, and R. L. Whitworth, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77, 083108(2006). [CrossRef]
  14. “Quickly” relates to the temporal length of the delay leg, the laser wavelength, the reflector velocity, and the detection and recording system.
  15. W. T. Buttler, “Comment on ‘accuracy limits and window corrections for photon Doppler velocimetry’ [J. Appl. Phys. 101, 013523 (2007)],” J. Appl. Phys. 103, 046102 (2008). [CrossRef]
  16. C. H. Bennett, “Quantum cryptography using any 2 nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992). [CrossRef] [PubMed]
  17. P. Townsend, J. G. Rarity, and P. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993). [CrossRef]
  18. P. Townsend, J. G. Rarity, and P. Tapster, “Enhanced single photon fringe visibility in a 10 km-long prototype quantum cryptography channel,” Electron. Lett. 29, 1291–1293(1993). [CrossRef]
  19. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989). [CrossRef]
  20. A. Muller, J. Bréguet, and N. Gisin, “Experimental demonstration of quantum cryptography using polarized photons in optical-fiber over more than 1 km,” Europhys. Lett. 23, 383–388 (1993). [CrossRef]
  21. J. Bréguet, A. Muller, and N. Gisin, “Quantum cryptography with polarized photons in optical fiber—experiment and practical limits,” J. Mod. Opt. 41, 2405–2412 (1994). [CrossRef]
  22. D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. 4, 42 (2002). [CrossRef]
  23. This operator, described in Appendix , transmits h-polarized light traveling from left-to-right unchanged, but when the reflected upper path light returns, it rotates h to left-circular (ℓ) polarization for quadrature detection.
  24. What we refer to here is a combination of the shocked surface (reflector) with a Faraday rotator. If the reflector is a mirror, this combination is known as a Faraday mirror: it rotates reflected polarizations by 90° (orthoconjugates).
  25. G. M. B. Bouricius and S. F. Clifford, “An optical interferometer using polarization coding to obtain quadrature phase components,” Rev. Sci. Instrum. 41, 1800–1803(1970). [CrossRef]
  26. The δt terms are small enough to be ignored because Δx≈[u(τ)+u(τ+Δt)]/cΔt demonstrating that Δt·ω0[u2(τ+Δt′)−u2(τ)]/c2≪1.
  27. D. H. Dolan, “Foundations of VISAR analysis,” Internal report SAND2006-1950 (Sandia National Laboratories, 2006).
  28. This constant fluctuates as a function of time due to environmental factors.
  29. D. J. Erskine and N. C. Holmes, “White light velocimetry,” Nature 377, 317–320 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited