OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4450–4459

Investigation on the properties of a laminar grating as a soft x-ray beam splitter

Ying Liu, Hans-Jörg Fuchs, Zhengkun Liu, Huoyao Chen, Shengnan He, Shaojun Fu, Ernst-Bernhard Kley, and Andreas Tünnermann  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4450-4459 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laminar-type gratings as soft x-ray beam splitters for interferometry are presented. Gold-coated grating beam splitters with 1000 lines / mm are designed for grazing incidence operation at 13.9 nm . They are routinely fabricated using electron beam lithography and ion etching techniques. The laminar grating is measured to have almost equal absolute efficiencies of about 20% in the zeroth and 1 st orders, which enables a fringe visibility up to 0.99 in the interferometer. The discrepancy of the grating profiles between the optimized theoretical and the experimental results is analyzed according to the comparison of the optimized simulation results and the measurement realization of the grating efficiencies. By a precise control of the grating profile, the grating efficiency in the 1 st order and the fringe visibility could be improved to 25% and 1, respectively.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.1360) Optical devices : Beam splitters
(340.7450) X-ray optics : X-ray interferometry
(260.6048) Physical optics : Soft x-rays

ToC Category:
Diffraction and Gratings

Original Manuscript: March 16, 2010
Revised Manuscript: July 11, 2010
Manuscript Accepted: July 12, 2010
Published: August 6, 2010

Ying Liu, Hans-Jörg Fuchs, Zhengkun Liu, Huoyao Chen, Shengnan He, Shaojun Fu, Ernst-Bernhard Kley, and Andreas Tünnermann, "Investigation on the properties of a laminar grating as a soft x-ray beam splitter," Appl. Opt. 49, 4450-4459 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000). [CrossRef]
  2. R. F. Smith, J. Dunn, J. Nilsen, V. N. Shlyaptsev, S. Moon, J. Filevich, J. J. Rocca, M. C. Marconi, J. R. Hunter, and T. W. Barbee, Jr., “Picosecond x-ray laser interferometry of dense plasmas,” Phys. Rev. Lett. 89, 065004 (2002). [CrossRef] [PubMed]
  3. J. Filevich, J. J. Rocca, M. C. Marconi, R. F. Smith, J. Dunn, R. Keenan, J. R. Hunter, S. J. Moon, J. Nilsen, A. Ng, and V. N. Shlyaptsev, “Picosecond-resolution soft-x-ray laser plasma interferometry,” Appl. Opt. 43, 3938–3946 (2004). [CrossRef] [PubMed]
  4. E. C. Hammarsten, B. Szapiro, E. Jankowska, J. Filevich, M. C. Marconi, and J. J. Rocca, “Soft x-ray laser diagnostics of exploding aluminum wire plasmas,” Appl. Phys. B 78, 933–937 (2004). [CrossRef]
  5. J. Filevich, J. Grava, M. Purvis, M. C. Marconi, and J. J. Rocca, “Prediction and observation of tin and silver plasmas with index of refraction greater than one in the soft x-ray range,” Phys. Rev. E 74, 016404 (2006). [CrossRef]
  6. M. Purvis, J. Grava, J. Filevich, M. C. Marconi, J. Dunn, S. J. Moon, V. N. Shlyaptsev, E. Jankowska, and J. J. Rocca, “Dynamics of converging laser-created plasmas in semicylindrical cavities studied using soft x-ray laser interferometry,” Phys. Rev. E 76, 046402 (2007). [CrossRef]
  7. J. Grava, M. A. Purvis, J. Filevich, M. C. Marconi, J. J. Rocca, J. Dunn, S. J. Moon, and V. N. Shlyaptsev, “Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry,” Phys. Rev. E 78, 016403 (2008). [CrossRef]
  8. Y. Liu, X. Tan, Z. Liu, X. Xu, Y. Hong, and S. Fu, “Soft x-ray holographic grating beam splitter including a double frequency grating for interferometer pre-alignment,” Opt. Express 16, 14761–14770 (2008). [CrossRef] [PubMed]
  9. U. Kleineberg, H.-J. Stock, A. Kloidt, K. Osterried, D. Menke, B. Schmiedeskamp, U. Heinzmann, D. Fuchs, P. Miiller, F. Scholze, and G. Ulm, “Mo/Si multilayer coated laminar phase and ruled blaze gratings for the soft x-ray region,” J. Electron Spectrosc. Relat. Phenom. 80, 389–392 (1996). [CrossRef]
  10. Y. Kitajima, K. Amemiya, Y. Yonamoto, T. Ohta, T. Kikuchi, T. Kosuge, A. Toyoshimaa, and K. Itoa, “A soft x-ray (80–1500eV) grazing incidence monochromator with varied-line-spacing plane gratings at PF-BL-11A,” J. Synchrotron Radiat. 5, 729–731(1998). [CrossRef]
  11. S. Ishikawa, T. Imazono, T. Hatano, M. Yanagihara, and M. Watanabe, “Efficiency and polarization performance of a multilayer-coated laminar grating in the 6.5–6.9nm wavelength region,” Appl. Opt. 41, 763–767 (2002). [CrossRef] [PubMed]
  12. M. Ishino, P. A. Heimann, H. Sasai, M. Hatayama, H. Takenaka, K. Sano, E. M. Gullikson, and M. Koike, “Development of multilayer laminar-type diffraction gratings to achieve high diffraction efficiencies in the 1–8keV energy region,” Appl. Opt. 45, 6741–6745 (2006). [CrossRef] [PubMed]
  13. M. P. Kowalski, R. G. Cruddace, J. F. Seely, and J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, and D. Menke, W. R. Hunter, “Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0nm wavelength region,” Opt. Lett. 22, 834–836 (1997). [CrossRef] [PubMed]
  14. W. R. Hunter, M. P. Kowalski, J. C. Rife, and R. G. Cruddace, “Investigation of the properties of an ion-etched plane laminar holographic grating,” Appl. Opt. 40, 6157–6165 (2001). [CrossRef]
  15. J. F. Seely, C. M. Brown, D. L. Windt, S. Donguy, and B. Kjornrattanawanich, “Normal-incidence efficiencies of multilayer-coated laminar gratings for the Extreme-Ultraviolet Imaging Spectrometer on the Solar-B mission,” Appl. Opt. 43, 1463–1471 (2004). [CrossRef] [PubMed]
  16. S. M. Owens, J. S. Gum, C. Tarrio, S. Grantham, J. Dvorak, B. Kjornrattanawanich, R. Keski-Kuha, R. J. Thomas, and C. C. Kankelborg, “Narrow-band EUV multilayer coating for the MOSES sounding rocket,” Proc. SPIE 5900, 590003 (2005). [CrossRef]
  17. L. I. Goray, “Grazing incidence off-plane lamellar grating as a beam splitter for a 1Å free electron laser,” J. Synch. Investig. 2, 796–800 (2008). [CrossRef]
  18. X. Tan, Y. Liu, X. Xu, Y. Hong, and S. Fu, “13.9nm laminar grating as beam splitter,” Opt. Precision Eng. 17, 33–37 (2009) (in Chinese).
  19. If we set the normal of grating G2 parallel to that of grating G1, we would obtain another configuration of the grating interferometer, as shown in Fig. . The main difference between the two configurations is that, in the second configuration, the zeroth order of G1 and the −1st order of G2 are used as one arm of the interferometer. The other arm of the interferometer is constructed by the −1st order of G1 and the zeroth order of G2. Accordingly, the throughput of the system changes to η0η−1 if G1 and G2 have the same profile. This configuration would be favorable with respect to the fringe visibility because fringe visibility V will approach 1, even if the efficiencies of the zeroth and −1st orders are different. Considering the spatial arrangement of the grating interferometer, we restrict use to the first configuration in this paper.
  20. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  22. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  23. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  24. http://henke.lbl.gov/optical_constants/layer2.html (1995–2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited