OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4460–4471

Modeling and interpretation of extinction spectra of oriented nonspherical composite particles: application to biological cells

Yulia M. Serebrennikova and Luis H. Garcia-Rubio  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4460-4471 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The majority of cells and microorganisms have a nonspherical shape and complex structure that challenge the interpretation of their spectral features. To address this issue, two approximations to the core-shell Mie theory were proposed. These included the approximation of light extinction by an ellipsoid with representation of the extinction by an equivalent sphere and representation of the extinction by a population of ellipsoidal particles with those of two weighted particle orientations. These hypotheses were first tested through numerical interpretation of the theoretical extinction spectra of prolate nucleated ellipsoids mimicking biological cells generated with anomalous diffraction approximation used as a reference method. Theoretical cases of fixed and random particle orientations demonstrated excellent capabilities of the proposed approach to retrieve the size, shape, and composition parameters of the model particles. Second, the UV–visible spectra of Leishmania species, promastigotes, elongated cells with prominent nuclei, were interpreted. The retrieved estimates of the protozoa size, shape, nucleus size, and nucleotide composition were in agreement with the corresponding microscopy estimates and literature values. Both theoretical tests and experimental results illustrated that the proposed approach can be successfully applied to estimate the structural and compositional parameters of cells from spectroscopic measurements.

© 2010 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(290.2200) Scattering : Extinction
(290.4020) Scattering : Mie theory

ToC Category:

Original Manuscript: January 4, 2010
Revised Manuscript: May 4, 2010
Manuscript Accepted: July 1, 2010
Published: August 9, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Yulia M. Serebrennikova and Luis H. Garcia-Rubio, "Modeling and interpretation of extinction spectra of oriented nonspherical composite particles: application to biological cells," Appl. Opt. 49, 4460-4471 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Latimer, A. Brunsting, B. E. Pyle, and C. Moore, “Effects of asphericity on single particle scattering,” Appl. Opt. 17, 3152–3158 (1978). [CrossRef] [PubMed]
  2. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 775–824 (2003). [CrossRef]
  3. H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).
  4. G. J. Streekstra, A. G. Hoekstra, and R. M. Heethaar, “Anomalous diffraction by arbitrarily oriented ellipsoids: applications in ektacytometry,” Appl. Opt. 33, 7288–7296(1994). [CrossRef] [PubMed]
  5. Y. Liu, W. P. Arnott, and J. Hallett, “Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results,” Appl. Opt. 37, 5019–5030 (1998). [CrossRef]
  6. P. Yang, Z. Zhang, B. A. Baum, H.-L. Huang, and Y. Hu, “A new look at anomalous diffraction theory (ADT): algorithm in cumulative projected-area distribution domain and modified ADT,” J. Quant. Spectrosc. Radiat. Transfer 89, 421–442(2004). [CrossRef]
  7. X. Sun, H. Tang, and G. Yuan, “Anomalous diffraction approximation method for retrieval of spherical and spheroidal particle size distributions in total light scattering,” J. Quant. Spectrosc. Radiat. Transfer 109, 89–106 (2008). [CrossRef]
  8. S. Jacquier and F. Gruy, “Anomalous diffraction approximation for light scattering cross section: case of ordered clusters of non-absorbent spheres,” J. Quant. Spectrosc. Radiat. Transfer 109, 789–810 (2008). [CrossRef]
  9. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Pergamon, 1969).
  10. P. Latimer, “Light scattering by ellipsoids,” J. Colloid Interface Sci. 53, 102–109 (1975). [CrossRef]
  11. C. E. Alupoaei and L. H. García Rubio, “An interpretation model for the UV-vis spectra of microorganisms,” Chem. Eng. Commun. 192, 198–218 (2005). [CrossRef]
  12. R. Bhandari, “Scattering coefficients for a multilayered sphere: analytic expressions and algorithms,” Appl. Opt. 24, 1960–1967 (1985). [CrossRef] [PubMed]
  13. O. B. Toon and T. P. Ackerman, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt. 20, 3657–3660 (1981). [CrossRef] [PubMed]
  14. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965). [CrossRef]
  15. M. J. Box, “A comparison of several current optimization methods, and the use of transformations in constrained problems,” Comput. J. 9, 67–77 (1966). [CrossRef]
  16. A. Debrabant, M. B. Joshi, P. F. P. Pimenta, and D. M. Dwyer, “Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics,” Int. J. Parasitol. 34, 205–217 (2004). [CrossRef] [PubMed]
  17. B. L. Herwaldt, “Leishmaniasis,” Lancet 354, 1191–1199 (1999). [CrossRef] [PubMed]
  18. A. L. da Silva, P. Williams, M. N. Melo, and W. Mayrink, “Distinction between promastigotes of Leishmania species developing in the digestive tract of laboratory reared Lutzomyia longipalpis,” Mem. Inst. Oswaldo Cruz 86, 67–71 (1991). [CrossRef] [PubMed]
  19. A. C. Ivens , C. S. Peacock, E. A. Worthey, L. Murphy, G. Aggarwal, M. Berriman, E. Sisk, M.-A. Rajandream, E. Adlem, R. Aert, A. Anupama, Z. Apostolou, P. Attipoe, N. Bason, C. Bauser, A. Beck, S. M. Beverley, G. Bianchettin, K. Borzym, G. Bothe, C. V. Bruschi, M. Collins, E. Cadag, L. Ciarloni, C. Clayton, R. M. R. Coulson, A. Cronin, A. K. Cruz, R. M. Davies, J. De Gaudenzi, D. E. Dobson, A. Duesterhoeft, G. Fazelina, N. Fosker, A. C. Frasch, A. Fraser, M. Fuchs, C. Gabel, A. Goble, A. Goffeau, D. Harris, C. Hertz-Fowler, H. Hilbert, D. Horn, Y. Huang, S. Klages, A. Knights, M. Kube, N. Larke, L. Litvin, A. Lord, T. Louie, M. Marra, D. Masuy, K. Matthews, S. Michaeli, J. C. Mottram, S. Müller-Auer, H. Munden, S. Nelson, H. Norbertczak, K. Oliver, S. O’Neil, M. Pentony, T. M. Pohl, C. Price, B. Purnelle, M. A. Quail, E. Rabbinowitsch, R. Reinhardt, M. Rieger, J. Rinta, J. Robben, L. Robertson, J. C. Ruiz, S. Rutter, D. Saunders, M. Schäfer, J. Schein, D. C. Schwartz, K. Seeger, A. Seyler, S. Sharp, H. Shin, D. Sivam, R. Squares, S. Squares, V. Tosato, C. Vogt, G. Volckaert, R. Wambutt, T. Warren, H. Wedler, J. Woodward, S. Zhou, W. Zimmermann, D. F. Smith, J. M. Blackwell, K. D. Stuart, B. Barrell, and P. J. Myler, “Leishmania major, the genome of the kinetoplastid parasite,” Science 309, 436–441 (2005). [CrossRef] [PubMed]
  20. Y. M. Serebrennikova, J. Patel, W. K. Milhous, and L. H. García-Rubio, “Quantitative analysis of morphological alterations in Plasmodium falciparum infected red blood cells through theoretical interpretation of spectral measurements,” J. Theor. Biol. 265, 493–500 (2010). [CrossRef] [PubMed]
  21. J. R. Hodkinson and I. Greenleaves, “Computations of light-scattering and extinction by spheres according to diffraction and geometrical optics, and some comparisons with the Mie theory,” J. Opt. Soc. Am. 53, 577–588 (1963). [CrossRef]
  22. A. Deepak and M. A. Box, “Forwardscattering corrections for optical extinction measurements in aerosol media. 1: Monodispersions,” Appl. Opt. 17, 2900–2908 (1978). [CrossRef] [PubMed]
  23. C. F. Bohren and G. Koh, “Forward-scattering corrected extinction by nonspherical particles,” Appl. Opt. 24, 1023–1029 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited