OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 23 — Aug. 10, 2010
  • pp: 4479–4482

Three-dimensional, arbitrary orientation of focal polarization

Phillip Olk, Thomas Härtling, René Kullock, and Lukas M. Eng  »View Author Affiliations

Applied Optics, Vol. 49, Issue 23, pp. 4479-4482 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simple setup for generating a three-dimensional arbitrary orientation of the polarization vector in a laser focus. The key component is the superposition of a linearly and a radially polarized laser beam, which both can be controlled individually in intensity and relative phase. We exemplify the usefulness of this setup by determining the spatial orientation of a single silver nanorod in three- dimensional space by recording the angle-variable backscattered light intensity.

© 2010 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(290.5850) Scattering : Scattering, particles
(290.5855) Scattering : Scattering, polarization

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 3, 2010
Revised Manuscript: July 15, 2010
Manuscript Accepted: July 20, 2010
Published: August 9, 2010

Phillip Olk, Thomas Härtling, René Kullock, and Lukas M. Eng, "Three-dimensional, arbitrary orientation of focal polarization," Appl. Opt. 49, 4479-4482 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Hopkins, “The Airy disc formula for systems of high relative aperture,” Proc. Phys. Soc. 55, 116–128 (1943). [CrossRef]
  2. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3, 2086–2093 (1986). [CrossRef]
  3. Y. Mushiake, K. Matsumura, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972). [CrossRef]
  4. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87(2000). [CrossRef] [PubMed]
  5. K. S. Youngworth and Thomas G. Brown, “Inhomogenous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000). [CrossRef]
  6. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  7. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef] [PubMed]
  8. T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, “A novel approach to detect and characterize the scattering patterns of single Au nanoparticles using confocal microscopy,” J. Microsc. 229, 337–343 (2008). [CrossRef] [PubMed]
  9. P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, “Two particle enhanced nano Raman microscopy and spectroscopy,” Nano Lett. 7, 1736–1740 (2007). [CrossRef] [PubMed]
  10. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef] [PubMed]
  11. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). [CrossRef] [PubMed]
  12. Here by a four-segment half-wave plate (B. Halle Nachfl. GmbH, Germany) with subsequent spatial cleaning.
  13. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959). [CrossRef]
  14. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  15. SNW-A60, 60nm nominal diameter (Blue Nano, USA).
  16. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless near-field optical microscopy,” J. Microsc. 202-1, 72–76 (2001). [CrossRef]
  17. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309–2314 (2004). [CrossRef]
  18. P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, “Distance dependent spectral tuning of two coupled metal nano particles,” Nano Lett. 8, 1174–1178 (2008). [CrossRef] [PubMed]
  19. C. Hafner, Post-Modern Electromagnetics: Using Intelligent MaXwell Solvers (Wiley, 1999).
  20. α-Planfluar, 100×, 1.45, ∞, 0.17 (Carl Zeiss MicroImaging GmbH, Germany).
  21. I. J. Cooper, M. Roy, and C. J. R. Sheppard, “Focusing of pseudoradial polarized beams,” Opt. Express 13, 1066–1071(2005). [CrossRef] [PubMed]
  22. N. V. Voshchinnikov and V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993). [CrossRef]
  23. Fig. 3.11, p. 43 in P. Olk, “Optical properties of individual nano-sized gold particle pairs,” Ph.D dissertation (Technische Universität Dresden2008), http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1218612352686-00553.
  24. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited