OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 24 — Aug. 20, 2010
  • pp: 4489–4493

Characterization and control of pulse shapes in a doubly resonant synchronously pumped optical parametric oscillator

Joseph E. Schaar, Jason S. Pelc, Konstantin L. Vodopyanov, and Martin M. Fejer  »View Author Affiliations


Applied Optics, Vol. 49, Issue 24, pp. 4489-4493 (2010)
http://dx.doi.org/10.1364/AO.49.004489


View Full Text Article

Enhanced HTML    Acrobat PDF (477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intracavity signal and idler pulses of a low-loss synchronously pumped doubly resonant optical parametric oscillator were characterized experimentally and simulated numerically versus cavity-length detuning. At operation several hundreds of times above threshold, the detunings that maximize the intracavity average power do not necessarily maximize the temporal overlap of the signal and idler pulses, as is desirable for devices making use of intracavity mixing. Independent control of the signal and idler cavity lengths allowed control of the widths and temporal positioning of the pulses. Numerical studies were performed exploring the intracavity power and temporal overlap of the signal and idler pulses under various group-velocity-mismatch conditions. There was good agreement between the experimental and numerical simulation results.

© 2010 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7220) Nonlinear optics : Upconversion

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 7, 2010
Revised Manuscript: July 18, 2010
Manuscript Accepted: July 19, 2010
Published: August 11, 2010

Citation
Joseph E. Schaar, Jason S. Pelc, Konstantin L. Vodopyanov, and Martin M. Fejer, "Characterization and control of pulse shapes in a doubly resonant synchronously pumped optical parametric oscillator," Appl. Opt. 49, 4489-4493 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-24-4489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. C. Cheung, K. Koch, and G. T. Moore, “Frequency upconversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19, 1967–1969 (1994). [CrossRef] [PubMed]
  2. M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23, 759–761 (1998). [CrossRef]
  3. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A Pure Appl. Opt. 7, S408–S414 (2005). [CrossRef]
  4. G. McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4μm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52, 717–724 (2007). [CrossRef] [PubMed]
  5. J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4–2.4μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32, 1414–1416 (2007). [CrossRef] [PubMed]
  6. J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971). [CrossRef]
  7. J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354–362(2008). [CrossRef]
  8. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7, 1385–1401 (1990). [CrossRef]
  9. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007). [CrossRef] [PubMed]
  10. B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67, 537–544 (1998). [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  12. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997). [CrossRef]
  13. A. L. Aleksandrovskii, G. I. Ershova, G. Kh. Kitaeva, S. P. Kulik, I. I. Naumova, and V. V. Tarasenko, “Dispersion of the refractive indices of LiNbO3:Mg and LiNbO3:Ycrystals,” Sov. J. Quantum Electron. 21, 225–227 (1991). [CrossRef]
  14. S. Schiller, “Principles and applications of optical monolithic total-internal-reflection resonators,” Ph.D. dissertation (Stanford University, 1993).
  15. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). [CrossRef]
  16. A. Haché, G. R. Allan, and H. M. van Driel, “Effects of cavity detuning on the pulse characteristics of a femtosecond synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2209–2213 (1995). [CrossRef]
  17. A. E. Siegman, Lasers (University Science, 1986).
  18. J. E. Schaar, “Terahertz sources based on intracavity parametric frequency down-conversion using quasi-phase-matched gallium arsenide,” Ph.D. dissertation (Stanford University, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited