OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 24 — Aug. 20, 2010
  • pp: 4531–4544

Feasibility study: fluorescence lidar for remote bird classification

Mikkel Brydegaard, Patrik Lundin, Zuguang Guan, Anna Runemark, Susanne Åkesson, and Sune Svanberg  »View Author Affiliations


Applied Optics, Vol. 49, Issue 24, pp. 4531-4544 (2010)
http://dx.doi.org/10.1364/AO.49.004531


View Full Text Article

Enhanced HTML    Acrobat PDF (2044 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for remote classification of birds based on eye-safe fluorescence lidar techniques. Mechanisms of quenching are discussed. Plumage reflectance is related to plumage fluorescence. Laboratory measurements on reflectance and fluorescence are presented, as well as test-range measurements. Also we present examples of birds’ in-flight lidar returns. The methods are suitable for studies of night migrating species and high-altitude classification with implications for the detailed understanding of bird migration and global virus spread.

© 2010 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1100) Remote sensing and sensors : Aerosol detection
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: March 15, 2010
Revised Manuscript: June 1, 2010
Manuscript Accepted: June 25, 2010
Published: August 13, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Mikkel Brydegaard, Patrik Lundin, Zuguang Guan, Anna Runemark, Susanne Åkesson, and Sune Svanberg, "Feasibility study: fluorescence lidar for remote bird classification," Appl. Opt. 49, 4531-4544 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-24-4531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Newton, The Migration Ecology of Birds (Academic, 2008).
  2. T. Alerstam and Å. Lindström, “Optimal bird migration: the relative importance of time, energy and safety,” in Bird Migration: Physiology and Ecophysiology, E.Gewinner, ed. (Springer-Verlag, 1990), pp. 331–351.
  3. T. Alerstam, A. Hedenström, and S. Åkesson, “Long-distance migration: evolution and determinants,” Oikos 103, 247–260(2003). [CrossRef]
  4. B. Bruderer and F. Liechti, “Höhe und Richtung von Tag- und Nachtzug im Herbst über Südwestdeutschland,” Ornitol. Beob. 95, 113–128 (1998).
  5. S. Zehnder, S. Åkesson, F. Liechti, and B. Bruderer, “Nocturnal autumn bird migration at Falsterbo, South Sweden,” J. Avian Biol. 32, 239–248 (2001). [CrossRef]
  6. P. Kerlinger and F. R. Moore, “Atmospheric structure and avian migration,” in Current Ornithology, D.M.Power, ed. (Plenum, 1989), Vol. 6, pp. 109–141.
  7. Å. Lindström, “The role of predation risk in stopover habitat selection in migrating bramblings, Fringilla montifringilla,” Behav. Ecol. 1, 102–106 (1990). [CrossRef]
  8. S. Åkesson and A. Hedenström, “How migrants get there: migratory performance and orientation,” BioScience 57, 123–133 (2007). [CrossRef]
  9. M. B. Casement, “Migration across the Mediterranean observed by radar,” Ibis 108, 461–491 (1966). [CrossRef]
  10. J. L. F. Parslow, “The migration of passerine night migrants across the English channel studied by radar,” Ibis 111, 48–79(1969). [CrossRef]
  11. D. H. W. Adams, “Radar observations of bird migration in Cyprus,” Ibis 104, 133–146 (1962). [CrossRef]
  12. T. Alerstam, “Nocturnal migration of Thrushes Turdus-Spp in Southern Sweden,” Oikos 27, 457–475 (1976). [CrossRef]
  13. B. Bruderer and F. Liechti, “Quantification of bird migration—different means compared,” in Proceedings of the Bird Strike Committee, Europe (1994), Vol. 22, pp. 243–254.
  14. T. Alerstam, J. Bäckman, G. A. Gudmundsson, A. Hedenström, S. S. Henningsson, H. Karlsson, M. Rosén, and R. Strandberg, “A polar system of intercontinental bird migration,” Proc. R. Soc. London Ser. B 274, 2523–2530 (2007). [CrossRef]
  15. S. A. Gauthreaux, Jr., “A portable ceilometer technique for studying low level nocturnal migration,” Bird Banding 40, 309–320 (1969). [CrossRef]
  16. S. Åkesson, “Coastal migration and wind drift compensation in nocturnal passerine migrants,” Ornis Scand. 24, 87–94 (1993). [CrossRef]
  17. S. Zehnder, S. Åkesson, F. Liechti, and B. Bruderer, “Seasonal and diurnal patterns of nocturnal bird migration at Falsterbo, South Sweden,” J. Avian Biol. 32, 239–248 (2001). [CrossRef]
  18. F. Liechti, D. Peter, R. Lardelli, and B. Bruderer, “Herbstlicher Vogelzug im Alpenraum nach Mond-Beobachtungen—Topographie un Wind beeinflussen den Zugverlauf,” Ornitol. Beob. 93, 131–152 (1996).
  19. F. Liechti, “Calibrating the moon-watching method—changes and limits,” Avian Ecol. Beh. 7, 27–41 (2001).
  20. F. Liechti, D. Peter, R. Lardelli, and B. Bruderer, “The Alps, an obstacle for nocturnal broad front migration—a survey based on moon-watching,” J. Ornithol. 137, 337–356 (1996). [CrossRef]
  21. P. H. Zehtindijev and F. Liechti, “A quantitative estimate of the spatial and temporal distribution of nocturnal bird migration in south-eastern Europe—a coordinated moon-watching study,” Avian Sci. 3, 37–45 (2003).
  22. B. Bruderer and E. Weitnauer, “Radar observations of the migration and night flights of the swift Apus-Apus,” Rev. Suisse Zool. 79, 1190–1200 (1972). [PubMed]
  23. J. Bäckman and T. Alerstam, “Confronting the winds: Orientation and flight behaviour of roosting swifts, Apus apus,” Proc. R. Soc. London Ser. B 268, 1081–1087 (2001). [CrossRef]
  24. T. Alerstam, M. Rosén, J. Bäckman, P. G. P. Ericson, and O. Hellgren, “Flight speeds among bird species: allometric and phylogenetic effects,” PLoS Biol. 5, e197 (2007). [CrossRef] [PubMed]
  25. F. Liechti, B. Bruderer, and H. Paproth, “Quantification of nocturnal bird migration by moonwatching: comparison with radar and infrared observations,” J. Field Ornithol. 66, 457–468(1995).
  26. C. J. Pennycuick, “Soaring behavior and performance of some East African birds observed from a motor glider,” Ibis 114, 178–218 (1972). [CrossRef]
  27. S. Svanberg, “Fluorescence spectroscopy and imaging of LIDAR targets,” in “Laser Remote Sensing, T.Fujii and T.Fukuchi, eds. (CRC Press, 2005). [CrossRef]
  28. S. Svanberg, “LIDAR,” in Springer Handbook of Lasers and OpticsF.Träger, ed. (Springer, 2007), pp. 1031–1052.
  29. S. Svanberg, “Laser fluorescence spectroscopy in environmental monitoring,” in Optoelectronics for Environmental Science, S.Martellucci and A.N.Chester, eds. (Plenum, 1990).
  30. K. S. Repasky, J. A. Shaw, R. Scheppele, C. Melton, J. L. Carsten, and L. H. Spangler, “Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines,” Appl. Opt. 45, 1839–1843(2006). [CrossRef] [PubMed]
  31. D. S. Hoffman, A. R. Nehrir, K. S. Repasky, J. A. Shaw, and J. L. Carlsten, “Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines,” Appl. Opt. 46, 3007–3012 (2007). [CrossRef] [PubMed]
  32. M. Brydegaard, Z. G. Guan, M. Wellenreuther, and S. Svanberg, “Insect monitoring with fluorescence lidar techniques: feasibility study,” Appl. Opt. 48, 5668–5677 (2009). [CrossRef] [PubMed]
  33. Z. G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, A. Runemark, E. Svensson, S. Åkesson, and S. Svanberg, “Fluorescence lidar for studies of movements of insects and birds,” in Proceedings of the 25th International Laser Radar Conference ILRC25 (2010).
  34. H. Dingle, Migration: The Biology of Life on the Move (Oxford U. Press, 1996).
  35. S. Jaques and B. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008). [CrossRef]
  36. V. Tuchin, “Tissue optics,” in Light Scattering and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).
  37. G. E. Hill and K. J. McGraw, eds., Bird Coloration Volume 1: Mechanisms and Measurements (Harvard U. Press, 2006).
  38. G. E. Hill and K. J. McGraw, eds., Bird Coloration Volume 2: Function and Evolution (Harvard U. Press, 2006).
  39. L. Pauling and R. B. Corey, “The structure of feather rachis keratin,” Proc. Natl. Acad. Sci. USA 37, 256–261 (1951). [CrossRef] [PubMed]
  40. D. J. Brink and N. G. van der Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D 37, 813–818 (2004). [CrossRef]
  41. E. G. Bendit and D. Ross, “A technique for obtaining the ultraviolet absorption spectrum of solid keratin,” Appl. Spectrosc. 15, 103–105 (1961). [CrossRef]
  42. D. Osorio and M. Vorobyev, “A review of the evolution of animal colour vision and visual communication signals,” Vision Res. 48, 2042–2051 (2008). [CrossRef] [PubMed]
  43. A. T. Bennett and M. Thery, “Avian color vision and coloration: multidisciplinary evolutionary biology,” Am. Nat. 169, S1–S6 (2007). [CrossRef]
  44. J. Reneerkens and P. Korsten, “Plumage reflectance is not affected by preen wax composition in red knots Calidris canutus,” J. Avian Biol. 35, 405–409 (2004). [CrossRef]
  45. S. M. Doucet and G. E. Hill, “Do museum specimens accurately represent wild birds? A case study of carotenoid, melanin, and structural colours in long-tailed manakins Chiroxiphia linearis,” J. Avian Biol. 40, 146–156 (2009). [CrossRef]
  46. D. Osorio and A. Ham, “Spectral reflectance and directional properties of structural coloration in bird plumage,” J. Exp. Biol. 205, 2017–2027 (2002). [PubMed]
  47. R. O. Prum, E. R. Dufresne, T. Quinn, and K. Waters, “Development of colour-producing beta-keratin nanostructures in avian feather barbs,” J. R. Soc. Interface 6, S253–S265 (2009). [PubMed]
  48. E. Warrant and D. E. Nilsson, eds. Invertebrate Vision(Cambridge U. Press, 2006).
  49. J. F. Jacobs, G. J. M. Koper, and W. N. J. Ursem, “UV protective coatings: a botanical approach,” Prog. Org. Coatings 58, 166–171 (2007). [CrossRef]
  50. A. M. Pena, M. Strupler, T. Boulesteix, and M. C. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt. Express 13, 6268–6274 (2005). [CrossRef] [PubMed]
  51. A. Ounis, Z. G. Cerovic, J. M. Briantais, and I. Moya, “DE-FLIDAR: a new remote sensing instrument for estimation of epidermal UV absorption in leaves and canopies,” in Proceedings of European Association of Remote Sensing Laboratories (EARSeL)-SIG-Workshop LIDAR (EARSeL, 2000), Vol. 1, pp. 196–204.
  52. G. B. Altshuler, K. Ilyasovand, C. V. Prikhodko, “Optical properties of human hair,” Tech. Phys. Lett. 21, 216–218 (1995).
  53. S. Jacques, “Origins of tissue optical properties in the UVA, visible and NIR regions,” in TOPS on Advances in Optical Imaging and Photon Migration II (Optical Society of America, 1996), pp. 364–367.
  54. A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech. 70, 154–161 (2007). [CrossRef]
  55. J. K. Armenta, P. O. Dunn, and L. A. Whittingham, “Quantifying avian sexual dichromatism: a comparison of methods,” J. Exp. Biol. 211, 2423–2430 (2008). [CrossRef] [PubMed]
  56. J. Ornborg, S. Andersson, S. C. Griffith, and B. C. Sheldon, “Seasonal changes in a ultraviolet structural colour signal in blue tits, Parus caeruleus,” Biol. J. Linn. Soc. 76, 237–245(2002). [CrossRef]
  57. K. J. McGraw and G. E. Hill, “Plumage color as a dynamic trait: carotenoid pigmentation of male house finches (Carpodacus mexicanus) fades during the breeding season,” Can. J. Zool. 82, 734–738 (2004). [CrossRef]
  58. K. Delhey, A. Peters, A. Johnsen, and B. Kempenaers, “Seasonal changes in blue tit crown color: do they signal individual quality?,” Behav. Ecol. 17, 790–798 (2006). [CrossRef]
  59. E. J. Willoughby, M. Murphy, and H. L. Gorton, “Molt, plumage abrasion, and color change in Lawrence’s Goldfinch,” Wilson Bull. 114, 380–392 (2002). [CrossRef]
  60. A. Peters, K. Delhey, S. Andersson, H. van Noordwijk, and M. I. Foerschler, “Condition-dependence of multiple carotenoid-based plumage traits: an experimental study,” Funct. Ecol. 22, 831–839 (2008). [CrossRef]
  61. G. Pohland and P. Mullen, “Preservation agents influence UV-coloration of plumage in museum bird skins,” J. Ornithol. 147, 464–467 (2006). [CrossRef]
  62. X. Wan, J. Fan, and H. Wu, “Measurement of thermal radiative properties of penguin down and other fibrous materials using FTIR,” Polym. Test. 28, 673–679 (2009). [CrossRef]
  63. C. J. Dove, A. M. Rijke, X. Wang, and L. S. Andrews, “Infrared analysis of contour feathers—the conservation of body heat radiation in birds,” J. Therm. Biol. 32, 42–46(2007). [CrossRef]
  64. S. C. V. Raman, “The theory of the Christiansen experiment,” Proc. Indian Acad. Sci. A29, 381–390 (1949).
  65. G. P. Kulemin, Millimeter Wave Radar Targets and Clutter (Artech House, 2003).
  66. I. C. Cuthill, J. C. Partridge, A. T. D. Bennett, S. C. Church, N. S. Hart, and S. Hunt, “Ultraviolet vision in birds,” Adv. Study Behav. 29, 159–214 (2000). [CrossRef]
  67. P. A. A. de Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. W. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum. 78, 123101(2007). [CrossRef]
  68. P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile lidar system for environmental monitoring,” Appl. Opt. 42, 3583–3594 (2003). [CrossRef] [PubMed]
  69. P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120(2001). [CrossRef]
  70. P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments: erratum,” Appl. Opt. 41, 434–436 (2002). [CrossRef]
  71. E. Wallinder, H. Edner, P. Ragnarson, and S. Svanberg, “Vertically sounding ozone LIDAR system based on a KrF excimer laser,” Phys. Scr. 55, 714–718 (1997). [CrossRef]
  72. H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, B. E. Maserti, and R. Bargalgli, “Atmospheric mercury mapping in a cinnabar mining area,” Sci. Total Environ. 133, 1–15(1993). [CrossRef]
  73. U. P. Hoppe, G. H. Hansen, and W. Eriksen, “ALOMAR—Ground-based monitoring of stratospheric ozone and related atmospheric parameters,” in 27th International Symposium on Remote Sensing of Environment (1998), pp. 244–247.
  74. Kipp & Zonen, Delft, the Netherlands (2010), www.kippzonen.com.
  75. Alternatively Optech Inc., Kiln, Miss., USA (2010), www.optech.com
  76. M. D. Shawkey, M. E. Hauber, L. K. Estep, and G. E. Hill, “Evolutionary transitions and mechanisms,” J. R. Soc. Interface 3, 777–786 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited