OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 24 — Aug. 20, 2010
  • pp: 4554–4557

Noise properties in a two-arm microscope imaging system with classical thermal light

Yanfeng Bai, Wenxing Yang, and Xiaoqiang Yu  »View Author Affiliations


Applied Optics, Vol. 49, Issue 24, pp. 4554-4557 (2010)
http://dx.doi.org/10.1364/AO.49.004554


View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analysis of the noise properties in a two-arm microscope imaging system. The aperture of the reference lens affects the imaging quality significantly. Using large apertures will enhance the resolution but also increase the noise. The effects from the distance the object is moved away from the original plane are also discussed, and we can obtain both good resolution and small noise by changing the distance.

© 2010 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4280) Coherence and statistical optics : Noise in imaging systems
(110.1650) Imaging systems : Coherence imaging

ToC Category:
Imaging Systems

History
Original Manuscript: April 5, 2010
Revised Manuscript: July 13, 2010
Manuscript Accepted: July 17, 2010
Published: August 13, 2010

Citation
Yanfeng Bai, Wenxing Yang, and Xiaoqiang Yu, "Noise properties in a two-arm microscope imaging system with classical thermal light," Appl. Opt. 49, 4554-4557 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-24-4554


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef] [PubMed]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995). [CrossRef] [PubMed]
  3. P. H. Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A 54, 3489–3492 (1996). [CrossRef]
  4. A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766(1999). [CrossRef]
  5. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002). [CrossRef] [PubMed]
  6. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004). [CrossRef] [PubMed]
  7. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004). [CrossRef] [PubMed]
  8. Y. Cai and S. Zhu, “Ghost interference with partially coherent radiation,” Opt. Lett. 29, 2716–2718 (2004). [CrossRef] [PubMed]
  9. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005). [CrossRef] [PubMed]
  10. D. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005). [CrossRef]
  11. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004). [CrossRef] [PubMed]
  12. G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006). [CrossRef]
  13. R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008). [CrossRef]
  14. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009). [CrossRef]
  15. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005). [CrossRef] [PubMed]
  16. J. Cheng, S. Han, and Y. Yan, “Resolution and noise in ghost imaging with classical thermal light,” Chin. Phys. 15, 2002–2006 (2006). [CrossRef]
  17. P. Zhang, W. Gong, X. Shen, D. Huang, and S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222–1224 (2009). [CrossRef] [PubMed]
  18. W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  20. Y. Bai, H. Liu, and S. Han, “Transmission area and correlated imaging,” Opt. Express 15, 6062–6068 (2007). [CrossRef] [PubMed]
  21. M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Shen, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited