OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 24 — Aug. 20, 2010
  • pp: 4568–4575

Detection and correction of spectral and spatial misregistrations for hyperspectral data using phase correlation method

Naoto Yokoya, Norihide Miyamura, and Akira Iwasaki  »View Author Affiliations


Applied Optics, Vol. 49, Issue 24, pp. 4568-4575 (2010)
http://dx.doi.org/10.1364/AO.49.004568


View Full Text Article

Enhanced HTML    Acrobat PDF (704 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hyperspectral imaging sensors suffer from spectral and spatial misregistrations due to optical-system aberrations and misalignments. These artifacts distort spectral signatures that are specific to target objects and thus reduce classification accuracy. The main objective of this work is to detect and correct spectral and spatial misregistrations of hyperspectral images. The Hyperion visible near-infrared subsystem is used as an example. An image registration method based on phase correlation demonstrates the accurate detection of the spectral and spatial misregistrations. Cubic spline interpolation using estimated properties makes it possible to modify the spectral signatures. The accuracy of the proposed postlaunch estimation of the Hyperion characteristics is comparable to that of the prelaunch measurements, which enables the accurate onboard calibration of hyperspectral sensors.

© 2010 Optical Society of America

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(100.6890) Image processing : Three-dimensional image processing
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6170) Spectroscopy : Spectra

ToC Category:
Image Processing

History
Original Manuscript: April 27, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: July 22, 2010
Published: August 16, 2010

Citation
Naoto Yokoya, Norihide Miyamura, and Akira Iwasaki, "Detection and correction of spectral and spatial misregistrations for hyperspectral data using phase correlation method," Appl. Opt. 49, 4568-4575 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-24-4568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. A. Kruse, J. W. Boardman, and J. F. Huntington, “Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping,” IEEE Trans. Geosci. Remote Sens. 41, 1388–1400 (2003). [CrossRef]
  2. R. O. Green, “Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683–690 (1998). [CrossRef]
  3. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39, 2210–2220 (2000). [CrossRef]
  4. J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion, a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41, 1160–1173(2003). [CrossRef]
  5. R. A. Neville, L. Sun, and K. Staenz, “Detection of spectral line curvature in imaging spectrometer data,” Proc. SPIE 5093, 144–154 (2003). [CrossRef]
  6. D. G. Goodenough, A. Dyk, K. O. Niemann, J. S. Pearlman, H. Chen, T. Han, M. Murdoch, and C. West, “Processing Hyperion and ALI for forest classification,” IEEE Trans. Geosci. Remote Sens. 41, 1321–1331 (2003). [CrossRef]
  7. E. Underwood, S. Ustin, and D. DiPietro, “Mapping nonnative plants using hyperspectral imagery,” Remote Sens. Environ. 86, 150–161 (2003). [CrossRef]
  8. J. T. Mundt, N. F. Glenn, K. T. Weber, T. S. Prather, L. W. Lass, and J. Pettingill, “Discrimination of hoary cress and determination of its detection limits via hyperspectral image processing and accuracy assessment techniques,” Remote Sens. Environ. 96, 509–517 (2005). [CrossRef]
  9. A. Dadon, E. Ben-Dor, and A. Karnieli, “Use of derivative calculations and minimum noise fraction transform for detecting and correcting the spectral curvature effect (smile) in Hyperion images,” IEEE Trans. Geosci. Remote Sens. 48, 2603–2612 (2010). [CrossRef]
  10. P. Clancy, EO-1/Hyperion Early Orbit Checkout Report Part 2: On-orbit Performance Verification and Calibration (TRW, 2002), pp. 107–111.
  11. R. A. Neville, L. Sun, and K. Staenz, “Detection of keystone in imaging spectrometer data,” Proc. SPIE 5425, 208–217 (2004). [CrossRef]
  12. F. Dell’Endice, J. Nieke, D. Schlapfer, and K. I. Itten, “Scene-based method for spatial misregistration detection in hyperspectral imagery,” Appl. Opt. 46, 2803–2816 (2007). [CrossRef] [PubMed]
  13. Y. Feng and Y. Xiang, “Mitigation of spectral mis-registration effects in imaging spectrometers via cubic spline interpolation,” Opt. Express 16, 15366–15374 (2008). [CrossRef] [PubMed]
  14. J. Chen and J. Katz, “Elimination of peak-locking error in PIV analysis using the correlation mapping method,” Meas. Sci. Technol. 16, 1605–1618 (2005). [CrossRef]
  15. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  16. H. Bartelt and J. L. Horner, “Improving binary phase correlation filters using iterative techniques,” Appl. Opt. 24, 2894–2897 (1985). [CrossRef] [PubMed]
  17. C. D. Kuglin and D. C. Hines, “The phase correlation image alignment method,” in Proceedings of IEEE Conference on Cybernetics and Society (IEEE, 1975), pp. 163–165.
  18. H. Shekarforoush, M. Berthod, and J. Zerubia, “Subpixel image registration by estimating the polyphase decomposition of the cross power spectrum,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1996), pp. 532–537.
  19. W. S. Hoge, “Subspace identification extension to the phase correlation method,” IEEE Trans. Med. Imaging 22, 277–280(2003). [CrossRef] [PubMed]
  20. S. Nagashima, T. Aoki, T. Higuchi, and K. Kobayashi, “A subpixel image matching technique using phase-only correlation,” in Proceedings of 2006 International Symposium on Intelligent Signal Processing and Communication Systems (IEEE, 2006), pp. 701–704.
  21. S. K. Park and F. O. Huck, “Estimation of spectral reflectance curves from multispectral image data,” Appl. Opt. 16, 3107–3114 (1977). [CrossRef] [PubMed]
  22. W. Liao, X. Chen, Y. Chen, and Y. Xia, “Index profiling of anisotropic graded-index planar waveguides from effective indices,” J. Opt. Soc. Am. A 22, 1334–1340 (2005). [CrossRef]
  23. G. Behforooz, “The not-a-knot piecewise interpolatory cubic polynomial,” Appl. Math. Comput. 52, 29–35 (1992). [CrossRef]
  24. A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation for ordering multispectral data in terms of image quality with implications for noise removal,” IEEE Trans. Geosci. Remote Sens. 26, 65–74 (1988). [CrossRef]
  25. J. Westerweel, “Effect of sensor geometry on the performance of PIV interrogation,” in Laser Techniques Applied to Fluid Mechanics, R.J.Adrian, D.F. G.Durão, F.Durst, M.V.Heitor, M.Maeda, and J.H.Whitelaw, eds. (Springer-Verlag, 2000), pp. 37–55. [CrossRef]
  26. J. M. Sasian, “Aberrations from a prism and a grating,” Appl. Opt. 39, 34–39 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited