OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 24 — Aug. 20, 2010
  • pp: 4655–4669

Aggregation process of optical properties and temperature over heterogeneous surfaces in infrared domain

Guillaume Fontanilles, Xavier Briottet, Sophie Fabre, Sidonie Lefebvre, and Pierre-François Vandenhaute  »View Author Affiliations

Applied Optics, Vol. 49, Issue 24, pp. 4655-4669 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a modeling of the aggregation processes of optical properties and temperature over the heterogeneous landscape in the infrared domain ( 3 14 μm ). The main objectives of the modeling are to understand how these parameters aggregate and to study their links at different spatial scales. As the landscape is described at each scale by its radiative parameters, general equations linking the radiative parameters at a given high spatial scale to those at a rough scale are proposed. Then these equations are applied to several synthetic landscapes. An analysis based on a design of experiments is conducted to point out the influence of each of the input factors. The results show the importance of the intrinsic parameters (reflectance, emissivity, and surface temperature) of each surface element and also the directional and spectral behaviors of the aggregated parameters.

© 2010 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 18, 2010
Manuscript Accepted: July 26, 2010
Published: August 20, 2010

Guillaume Fontanilles, Xavier Briottet, Sophie Fabre, Sidonie Lefebvre, and Pierre-François Vandenhaute, "Aggregation process of optical properties and temperature over heterogeneous surfaces in infrared domain," Appl. Opt. 49, 4655-4669 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Chehbouni, E. Njoku, J.-P. Lhomme, and Y. Kerr, “Approaches for averaging surface parameters and fluxes over heterogeneous terrain,” J. Clim. 8, 1386–1393 (1995). [CrossRef]
  2. R. B. Myneni, R. R. Nemani, and S. W. Running, “Estimation of global leaf area index and absorbed par using radiative transfer models,” IEEE Trans. Geosci. Remote Sensing 35, 1380–1393 (1997). [CrossRef]
  3. Z. Jiang, A. R. Huete, J. Chen, Y. Chen, J. Li, G. Yan, and X. Zhang, “Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction,” Remote Sens. Environ. 101, 366–378 (2006). [CrossRef]
  4. L. Coret, X. Briottet, Y. Kerr, and A. Chehbouni, “Simulation study of view angle effects on thermal infrared measurements over heterogeneous surfaces,” IEEE Trans. Geosci. Remote Sensing 42, 664–672 (2004). [CrossRef]
  5. B. Coudert, C. Ottlé, and B. Boudevillain, “Contribution of thermal infrared remote sensing data in multiobjective calibration of a dual-source SVAT model,” J. Hydrometeorology 7, 404–420 (2006). [CrossRef]
  6. F. Becker, M. Meneti, and M. Raffy, “Surface heterogeneity at various scales: concepts, measurement & impact on modeling,” presented at the 8th International Symposium of Physical Measurements & Signatures in Remote Sensing, Aussois, France 2001.
  7. F. Becker and Z.-L. Li, “Surface temperature and emissivity at various scales: definition, measurement and related problems,” Remote Sens. Rev. 12, 225–253 (1995). [CrossRef]
  8. Z.-L. Li, A. H. Strahler, and M. Friedl, “A conceptual model for effective directional emissivity from nonisothermal surface,” IEEE Trans. Geosci. Remote Sensing 37, 2508–2517 (1999). [CrossRef]
  9. G. Yan, M. Friedl, X. Li, J. Wang, C. Zhu, and A. H. Strahler, “Modeling directional effects from nonisothermal land surfaces in wideband thermal infrared measurements,” IEEE Trans. Geosci. Remote Sensing 39, 1095–1099 (2001). [CrossRef]
  10. Z. Wan and J. Dozier, “A generalized slipt-window algorithm for retrieving land surface temperature from space,” IEEE Trans. Geosci. Remote Sensing 34, 892–905 (1996). [CrossRef]
  11. G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer Verlag, 1996).
  12. X. Xu, W. Fan, and Y. Zhang, “The component temperature of mixed pixel retrieved by multi-angle combined multi-time thermal infrared remotely sensed data,” presented at the International Symposium, Valence, Spain 2002.
  13. L. Su, X. Li, S. Liang, and A. H. Strahler, “Simulation of scaling effects of thermal emission from nonisothermal pixels with the typical three-dimensional structure,” Int. J. Remote Sensing 24, 3743–3753 (2003). [CrossRef]
  14. Z.-L. Li, J. Wang, and A. H. Strahler, “Scale effects and scaling-up by geometric-optical model,” Science in China (Series E) 43, 17–22 (2000). [CrossRef]
  15. J. M. Norman and F. Becker, “Terminology in thermal infrared remote sensing of natural surfaces,” Agri. For. Meteorol. 77, 153–166 (1995). [CrossRef]
  16. J. A. Voogt and T. R. Oke, “Complete urban surface temperatures,” J. Appl. Meteorol. 36, 1117–1132 (1997). [CrossRef]
  17. G. Fontanilles, X. Briottet, S. Fabre, and T. Trémas, “Thermal infrared radiance simulation with aggregation modeling (TITAN): an infrared radiative transfer model for heterogeneous 3-D surface—application over urban areas,” Appl. Opt. 47, 5799–5810 (2008). [CrossRef]
  18. L. Chen, Z.-L. Li, Q. Liu, S. Chen, Y. Tang, and B. Zhong, “Definition of component effective emissivity for heterogeneous and non-isothermal surfaces and its approximate calculation,” Int. J. Remote Sensing 25, 231–244 (2004). [CrossRef]
  19. A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, L. S. Bernstein, E. P. Shettle, M. W. Matthew, and S. M. Adler-Golden, “Modtran 4” (1999).
  20. X. Briottet, J.-P. Lagouarde, G. Fontanilles, A. Hénon, G. Pigeon, J.-P. Gastellu Etchegorry, P. Mestayer, I. Calmet, V. Masson, and A. Brut, “Intercomparison exercise of infrared radiative transfer models in the urban canopy,” submitted to Remote Sens. Environ.
  21. J. Norman and F. Becker, “Terminology in thermal infrared remote sensing of natural surfaces,” Remote Sens. Rev. 12, 159–173 (1995). [CrossRef]
  22. B. Seguin, F. Becker, and T. Phulpin, “Irsute: un concept de minisatellite pour l’estimation des flux de surface échangés par la biopshère continentale à l’échelle locale de la parcelle,” in Symposium International de Courchevel (France) (1997), Vol. 2, pp. 861–870.
  23. S. Pallotta, “Compréhension du signal issu d’une surface hétérogène dans le domaine infrarouge en télédétection : analyse de l’agrégation des propriétés thermo-optiques de ses constituants,” Ph.D. dissertation (École Nationale Supérieure de l’Aéronautique et de l’Espace, ONERA, 2006).
  24. J. S. Hook, ASTER, http://speclib.jpl.nasa.gov (1998).
  25. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction (Springer, 2002).
  26. R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, 1995), Chap. 2.
  27. R. Mukerjee and C. Wu, A Modern Theory of Factorial Designs, Springer Series I Statistics (Springer, 2006).
  28. M. Sergent and R. Phan-Tan-Luu, “Méthodologie de la recherche expérimentale (Plans d’expériences), Vol. 1 et 2,” logiciel Nemrodw (2007).
  29. R free software, “Langage de programmation et environnement,” www.r-project.org.
  30. V. Masson, G. Pigeon, P. Durand, L. Gomes, L. Salmond, J.-P. Lagouarde, J. Voogt, T. Oke, C. Lac, C. Liousse, and D. Maro, “The Canopy and Aerosol Particles I Toulouse Urban Layer (CAPITOUL) experiments: first results,” in Proceedings of the Fifth Symposium on the Urban Environment (AMS, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited