OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4677–4686

Development of microperiodic mirrors for hard x-ray phase-contrast imaging

Dan Stutman, Michael Finkenthal, and Nicolae Moldovan  »View Author Affiliations

Applied Optics, Vol. 49, Issue 25, pp. 4677-4686 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Differential phase-contrast imaging with hard x rays can have important applications in medicine, material sciences, and energy research. Phase-contrast methods based on microperiodic optics, such as shearing interferometry, are particularly attractive because they allow the use of conventional x-ray tubes. To enable shearing interferometry with x rays up to 100 keV , we propose using grazing- incidence microperiodic mirrors. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors, based on the difference in grazing-incidence reflectivity between a low-Z substrate and a high-Z film. Using this method, we produced prototype mirrors with 5 100 μm periods and 90 mm active length. Experimental tests with x rays up to 60 keV indicate good microperiodic mirror reflectivity and high-contrast fringe patterns, encouraging further development of the proposed imaging concept.

© 2010 Optical Society of America

OCIS Codes
(340.0340) X-ray optics : X-ray optics
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

Original Manuscript: May 27, 2010
Revised Manuscript: July 21, 2010
Manuscript Accepted: July 28, 2010
Published: August 24, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Dan Stutman, Michael Finkenthal, and Nicolae Moldovan, "Development of microperiodic mirrors for hard x-ray phase-contrast imaging," Appl. Opt. 49, 4677-4686 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.-A. Zhou and A. Brahme, “Development of phase-contrast X-ray imaging techniques and potential medical applications,” Phys. Medica 24, 129–148 (2008). [CrossRef]
  2. C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, “Multiple-image radiography for human soft tissue,” J. Anat. 208, 115–124 (2006). [CrossRef] [PubMed]
  3. T. Yuasa, E. Hashimoto, A. Maksimenko, H. Sugiyama, Y. Arai, D. Shimao, S. Ichihara, and M. Ando, “Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT,” Nucl. Instrum. Methods Phys. Res. A 591, 546–557 (2008). [CrossRef]
  4. J. Li, Z. Zhong, D. Connor, J. Mollenhauer, and C. Muehleman, “Phase-sensitive x-ray imaging of synovial joints,” Osteoarthritis Cartilage 17, 1193–1196 (2009). [CrossRef] [PubMed]
  5. P. Coan, J. Mollenhauer, A. Wagner, C. Muehleman, and A. Bravin, “Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF,” Eur. J. Radiol. 68, S41–S48 (2008). [CrossRef] [PubMed]
  6. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004). [CrossRef] [PubMed]
  7. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008). [CrossRef] [PubMed]
  8. Yogesh S. Kashyap, P. S. Yadav, Tushar Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based x-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66, 1083–1090 (2008). [CrossRef] [PubMed]
  9. S. Mayo, R. Evans, F. Chen, and R. Lagerstrom, “X-ray phase-contrast micro-tomography and image analysis of wood microstructure,” J. Phys. Conf. Ser. 186, 012105 (2009). [CrossRef]
  10. M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. 101, 123902 (2008). [CrossRef] [PubMed]
  11. J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009). [CrossRef]
  12. H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suorttia, “Refraction and scattering of x-rays in analyzer based imaging,” J. Synchrotron Radiat. 14, 512–521 (2007). [CrossRef] [PubMed]
  13. M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans, and F. Pfeiffer, “Hard x-ray phase-contrast imaging with the compact light source based on inverse Compton x-rays,” J. Synchrotron Radiat. 16, 43–47 (2008). [CrossRef] [PubMed]
  14. C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16, 918–923 (2009). [CrossRef] [PubMed]
  15. J. F. Clauser, “Ultrahigh resolution interferometric x-ray imaging,” U.S. patent 5,812,629 (22 September 1998).
  16. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006). [CrossRef]
  17. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006). [CrossRef]
  18. T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006). [CrossRef]
  19. C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007). [CrossRef]
  20. E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P.-J. Jakobs, “Soft x-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008). [CrossRef]
  21. M. Bech, T. H. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-contrast tomography with an x-ray tube source,” Phys. Med. Biol. 54, 2747–2754 (2009). [CrossRef] [PubMed]
  22. T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempe, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80, 053701 (2009). [CrossRef] [PubMed]
  23. T. Weitkamp, “XWFP: an x-ray wavefront propagation software package for the IDL computer language,” Proc. SPIE 5536, 181–189 (2004). [CrossRef]
  24. M. Sanchez del Rio and R. J. Dejus, “XOP: recent developments,” Proc. SPIE 3448, 340–345 (1998). [CrossRef]
  25. M. Testorf, J. Jahn, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996). [CrossRef]
  26. S. Aoki, N. Watanabe, T. Ohigashi, H. Yokosuka, Y. Suzuki, A. Takeuchi, and H. Takano, “Production of reflection point sources for hard x-ray Gabor holography,” Jpn. J. Appl. Phys. 44, 417–421 (2005). [CrossRef]
  27. Y. Suzuki, A. Takeuchi, and Y. Terada, “High-energy x-ray microbeam with total-reflection mirror optics,” Rev. Sci. Instrum. 78, 053713 (2007). [CrossRef] [PubMed]
  28. http://www.customscientific.com/.
  29. http://www.dalsa.com/public/ls/datasheets/xr4s_datasheet_101708.pdf.
  30. http://www.amptek.com/.
  31. K. Ichiyanagi, K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, “100 ps time-resolved solution scattering utilizing a wide-bandwidth x-ray beam from multilayer optics,” J. Synchrotron Radiat. 16, 391–394 (2009). [CrossRef] [PubMed]
  32. G. Jost, S. Golfiera, R. Lawaczecka, H.-J. Weinmanna, M. Gerlachb, L. Cibikb, M. Krumreyb, D. Fratzscherc, J. Rabec, V. Arkadievc, M. Haschkec, N. Langhoffc, R. Wedelld, L. Luedemanne, P. Wuste, and H. Pietscha, “Imaging-therapy computed tomography with quasi-monochromatic x-rays,” Eur. J. Radiol. 68S, S63–S68 (2008). [CrossRef]
  33. M. Schneider, J. Stahn, and P. Boni, “Focusing of cold neutrons: performance of a laterally graded and parabolically bent multilayer,” Nucl. Instrum. Methods Phys. Res. A 610, 530–533 (2009). [CrossRef]
  34. M. V. Gubarev, B. D. Ramsey, D. E. Engelhaupt, J. M. Burgess, and D. F. R. Mildner, “An evaluation of grazing-incidence optics for neutron imaging,” Nucl. Instrum. Methods Phys. Res. B 265, 626–630 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited