OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4710–4714

Return-path, multiple-principal-angle, internal-reflection ellipsometer for measuring IR optical properties of aqueous solutions

R. M. A. Azzam  »View Author Affiliations

Applied Optics, Vol. 49, Issue 25, pp. 4710-4714 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A retroreflection (return-path) spectroscopic ellipsometer without a wave plate is described that uses an IR-transparent high-refractive-index hemicylindrical semiconductor substrate to measure the optical properties of aqueous solutions from multiple principal angles and multiple principal azimuths of atten uated internal reflection (AIR) at the semiconductor–solution interface. The pseudo-Brewster angle of minimum reflectance for the p polarization is also readily measured using the same instrument. This wealth of data can also be used to characterize thin films at the solid–liquid interface. Simulated results of AIR at the Si–water interface over the 1.2 11 μm IR spectral range are presented in support of this concept. The optical properties of water and aqueous solutions are important for modeling radiative transfer in the atmosphere and oceans and for biomedical and tissue optics.

© 2010 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(160.4760) Materials : Optical properties
(240.0240) Optics at surfaces : Optics at surfaces
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 18, 2010
Manuscript Accepted: July 26, 2010
Published: August 24, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

R. M. A. Azzam, "Return-path, multiple-principal-angle, internal-reflection ellipsometer for measuring IR optical properties of aqueous solutions," Appl. Opt. 49, 4710-4714 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  2. R. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).
  3. R.M. A.Azzam, ed., Selected Papers on Ellipsometry, Vol. MS27 of SPIE Milestone Series (SPIE, 1991).
  4. H.G.Tompkins and E.A.Irene, eds., Handbook of Ellipsometry (William Andrew, 2005). [CrossRef]
  5. R. M. A. Azzam, “Ellipsometry,” in Handbook of Optics, M.Bass and V.N.Mahajan, eds. (McGraw-Hill, 2010), Vol. I.
  6. D. E. Aspnes, “Optimizing precision of rotating-analyzer ellipsometers,” J. Opt. Soc. Am. 64, 639–646 (1974). [CrossRef]
  7. R. M. A. Azzam and A.-R. Zaghloul, “Principal angle, principal azimuth, and principal-angle ellipsometry of film-substrate systems,” J. Opt. Soc. Am. 67, 1058–1065 (1977). [CrossRef]
  8. D. Chandler-Horowitz and G. A. Candela, “Principal angle spectroscopic ellipsometry utilizing a rotating analyzer,” Appl. Opt. 21, 2972–2977 (1982). [CrossRef] [PubMed]
  9. L. Schrottke and G. Jungk, “Automated null ellipsometer with rotating analyzer,” Rev. Sci. Instrum. 65, 3657–3660 (1994). [CrossRef]
  10. H. M. O’Bryan, “The optical constants of several metals in vacuum,” J. Opt. Soc. Am. 26, 122–127 (1936). [CrossRef]
  11. M. Yamamoto, “New type of precision ellipsometer without employing a compensator,” Opt. Commun. 10, 200–202 (1974). [CrossRef]
  12. T. Yamaguchi and H. Takahashi, “Autocollimation-type ellipsometer for monitoring film growth through a single window,” Appl. Opt. 15, 677–680 (1976). [CrossRef] [PubMed]
  13. R. M. A. Azzam, “Oblique and normal-incidence photometric return-path ellipsometer for isotropic and anisotropic surfaces,” J. Opt. 9, 131–134 (1978). [CrossRef]
  14. M. Yamamoto and O. S. Heavens, “A vacuum automatic ellipsometer for principal angle of incidence measurement,” Surf. Sci. 96, 202–216 (1980). [CrossRef]
  15. R. M. A. Azzam, “Measurement of the Jones matrix of an optical system by return-path null ellipsometry,” J. Mod. Opt. 28, 795–800 (1981). [CrossRef]
  16. A. B. Marchant and J. J. Wrobel, “Simple ellipsometer design,” Appl. Opt. 20, 2040–2041 (1981). [CrossRef] [PubMed]
  17. L. R. Watkins and S. S. Shamailov, “Variable angle of incidence spectroscopic autocollimating ellipsometer,” Appl. Opt. 49, 3231–3234 (2010). [CrossRef] [PubMed]
  18. M. R. Querry, B. Curnutte, and D. Williams, “Refractive index of water in the infrared,” J. Opt. Soc. Am. 59, 1299–1305(1969). [CrossRef]
  19. M. R. Querry, R. C. Waring, W. E. Holland, G. M. Hale, and W. Nijm, “Optical constants in the infrared for aqueous solutions of NaCl,” J. Opt. Soc. Am. 62, 849–855(1972). [CrossRef]
  20. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  21. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110(1974). [CrossRef]
  22. M. N. Afsar and J. B. Hasted, “Measurements of the optical constants of liquid H2O and D2O between 6 and 450 cm−1,” J. Opt. Soc. Am. 67, 902–904 (1977). [CrossRef]
  23. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbing liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989). [CrossRef] [PubMed]
  24. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007). [CrossRef] [PubMed]
  25. S. Rekveld, Ellipsometric Studies of Protein Adsorption onto Hard Surfaces in a Flow Cell (Fedobruk, 1997).
  26. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43, 3028–3036 (2004). [CrossRef] [PubMed]
  27. Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007). [CrossRef] [PubMed]
  28. W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.
  29. R. M. A. Azzam, “Contours of constant principal angle and constant principal azimuth in the complex ε plane,” J. Opt. Soc. Am. 71, 1523–1528 (1981). [CrossRef]
  30. R. M. A. Azzam and A. Alsamman, “Plurality of principal angles for a given pseudo-Brewster angle when polarized light is reflected at a dielectric-conductor interface,” J. Opt. Soc. Am. A 25, 2858–2864 (2008). [CrossRef]
  31. R. M. A. Azzam and E. Ugbo, “Contours of constant pseudo-Brewster angle in the complex ε plane and an analytical method for the determination of optical constants,” Appl. Opt. 28, 5222–5228 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited