OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4728–4734

Fourier-transform absorption spectroscopy in reciprocating engines

Keith D. Rein and Scott T. Sanders  »View Author Affiliations

Applied Optics, Vol. 49, Issue 25, pp. 4728-4734 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (725 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have adapted our in-cylinder Fourier-transform spectroscopy technique to measure absorption spectra in a reciprocating engine. Previously, we had used the technique for emission spectroscopy; the upgrade to absorption spectroscopy mode is important because it allows for more quantitative anal ysis of gas properties than is possible with emission spectroscopy. Here, we discuss fuel, H 2 O , and CO 2 spectra measured in an engine using a spark-plug-based probe for optical access and use the water portion of the spectra to determine in-cylinder gas temperature. The temperature results show that heat transfer effects can significantly bias thermometry when fiber-coupled engine probes are used.

© 2010 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6780) Instrumentation, measurement, and metrology : Temperature
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 28, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: July 29, 2010
Published: August 25, 2010

Keith D. Rein and Scott T. Sanders, "Fourier-transform absorption spectroscopy in reciprocating engines," Appl. Opt. 49, 4728-4734 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, “Wavelength-agile laser sensors for measuring gas properties in engines,” in SAE 2003 Transactions Journal of Engines (Society of Automotive Engineers, 2003), pp. 1578–1583.
  2. C. L. Hagen and S. T. Sanders, “Toward hyperspectral sensing in practical devices: measurements of fuel, H2O, and gas temperature in a metal HCCI engine,” J. Near Infrared Spectrosc. 15, 217–225 (2007). [CrossRef]
  3. R. J. Bartula, J. B. Ghandhi, S. T. Sanders, E. J. Mierkiewicz, F. L. Roesler, and J. M. Harlander, “OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy,” Appl. Opt. 46, 8635–8640 (2007). [CrossRef] [PubMed]
  4. K. D. Rein, R. J. Bartula, and S. T. Sanders, “Interferometric techniques for crank-angle resolved measurements of gas spectra in engines,” SAE Technical Paper 09M-0209 (Society of Automotive Engineers, 2009).
  5. K. D. Rein, S. T. Sanders, S. R. Lowry, E. Y. Jiang, and J. J. Workman, “In-cylinder Fourier-transform infrared spectroscopy,” Meas. Sci. Technol. 19, 043001 (2008). [CrossRef]
  6. D. A. Splitter, S. L. Kokjohn, K. D. Rein, R. M. Hanson, S. T. Sanders, and R. D. Reitz, “An optical investigation of ignition processes in fuel reactivity controlled PCCI Combustion,” SAE Technical Paper 2010-01-0345 (Society of Automotive Engineers, 2010).
  7. S. M. Skippon, S. R. Nattrass, J. S. Kitching, and L. Hardiman, “Effects of fuel composition on in-cylinder air/fuel ratio during fuelling transients in an SI engine, measured using differential infra-red absorption,” SAE Document 961204 (Society of Automotive Engineers, 1996).
  8. M. J. Hall and M. Koenig, “A fiber-optic probe to measure precombustion in-cylinder fuel-air ratio fluctuations in production engines,” in Symposium (International) on Combustion (Combustion Institute, 1996), pp. 2613–2618. [CrossRef]
  9. N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31, 3033–3040(2007). [CrossRef]
  10. E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using 3.392 μm infrared laser absorption method: discussion of applicability with homogeneous methane–air mixture,” Meas. Sci. Technol. 14, 1350–1356 (2003). [CrossRef]
  11. A. Grosch, V. Beushausen, and O. Thiele, “Crank angle resolved determination of fuel-concentration and air/fuel ratio in a SI-production engine by using a modified optical spark plug,” in Advanced Microsystems for Automotive Applications, J.Valldorf and W.Gessner, eds. (Springer, 2008), paper 2008105.
  12. G. Rieker, H. Li, X. Liu, J. Liu, J. Jeffries, R. Hanson, M. Allen, S. Wehe, P. Mulhall, and H. Kindle, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007). [CrossRef]
  13. B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 1996), p. 33.
  14. R. A. Palmer, C. J. Manning, J. A. Rzepiela, J. M. Widder, and J. L. Chao, “Time-resolved spectroscopy using step-scan Fourier transform interferometry,” Appl. Spectrosc. 43, 193–195 (1989). [CrossRef]
  15. R. E. Murphy, F. H. Cook, and H. Sakai, “Time-resolved Fourier spectroscopy,” J. Opt. Soc. Am. 65, 600–604 (1975). [CrossRef]
  16. R. E. Murphy and H. Sakai, “Application of Fourier spectroscopy technique to the study of relaxation phenomena,” in Aspen International Conference on Fourier Spectroscopy (Air Force Cambridge Research Labs, 1971), pp. 301–304.
  17. A. W. Caswell, “Water vapor absorption thermometry for practical combustion applications,” Ph.D. dissertation (University of Wisconsin–Madison, 2009).
  18. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007). [CrossRef] [PubMed]
  19. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31, 783–790 (2007). [CrossRef]
  20. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005). [CrossRef]
  21. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006). [CrossRef]
  22. A. E. Klingbeil, “Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments,” Ph.D.dissertation (Stanford University, 2008).
  23. L. A. Kranendonk, “Wavelength-agile absorption spectroscopy for measuring temperature and H2O mole fraction in harsh environments,” Ph.D. dissertation (University of Wisconsin–Madison, 2007).
  24. J. R. Brossman, “Light-load burn rate analysis in an air-cooled utility engine,” M.S. thesis (University of Wisconsin–Madison, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited