OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4801–4807

Simple approach to the relation between laser frequency noise and laser line shape

Gianni Di Domenico, Stéphane Schilt, and Pierre Thomann  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. 4801-4807 (2010)
http://dx.doi.org/10.1364/AO.49.004801


View Full Text Article

Enhanced HTML    Acrobat PDF (682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency fluctuations of lasers cause a broadening of their line shapes. Although the relation between the frequency noise spectrum and the laser line shape has been studied extensively, no simple expression exists to evaluate the laser linewidth for frequency noise spectra that does not follow a power law. We present a simple approach to this relation with an approximate formula for evaluation of the laser linewidth that can be applied to arbitrary noise spectral densities.

© 2010 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.3430) Lasers and laser optics : Laser theory
(140.3460) Lasers and laser optics : Lasers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 13, 2010
Manuscript Accepted: July 8, 2010
Published: August 30, 2010

Citation
Gianni Di Domenico, Stéphane Schilt, and Pierre Thomann, "Simple approach to the relation between laser frequency noise and laser line shape," Appl. Opt. 49, 4801-4807 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-4801


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Zhu and J. L. Hall, “Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer,” J. Opt. Soc. Am. B 10, 802–816 (1993). [CrossRef]
  2. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999). [CrossRef]
  3. L. Conti, M. D. Rosa, and F. Marin, “High-spectral-purity laser system for the AURIGA detector optical readout,” J. Opt. Soc. Am. B 20, 462–468 (2003). [CrossRef]
  4. M. Heurs, V. M. Quetschke, B. Willke, K. Danzmann, and I. Freitag, “Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique,” Opt. Lett. 29, 2148–2150 (2004). [CrossRef] [PubMed]
  5. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Pérot cavities,” Phys. Rev. A 77, 053809 (2008). [CrossRef]
  6. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44, 12(2008). [CrossRef]
  7. F. Acernese, M. Alshourbagy, F. Antonucci, S. Aoudia, K. G. Arun, P. Astone, G. Ballardin, F. Barone, L. Barsotti, M. Barsuglia, T. S. Bauer, S. Bigotta, S. Birindelli, M. A. Bizouard, C. Boccara, F. Bondu, L. Bonelli, L. Bosi, S. Braccini, C. Bradaschia, A. Brillet, V. Brisson, H. J. Bulten, D. Buskulic, G. Cagnoli, E. Calloni, and E. Campagna, “Laser with an in-loop relative frequency stability of 1.0×10−21 on a 100 ms time scale for gravitational-wave detection,” Phys. Rev. A 79, 053824 (2009). [CrossRef]
  8. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. D. Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express 17, 9582–9587(2009). [CrossRef] [PubMed]
  9. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow–Townes limit,” Phys. Rev. Lett. 104, 083904 (2010). [CrossRef] [PubMed]
  10. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band shape and bandwidth modification,” Phys. Rev. A 26, 12–18(1982). [CrossRef]
  11. P. B. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE J. Quantum Electron. 20, 343–350 (1984). [CrossRef]
  12. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958). [CrossRef]
  13. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982). [CrossRef]
  14. G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71, 043809 (2005). [CrossRef]
  15. J.-P. Tourrenc, “Caractérisation et modélisation du bruit d’amplitude optique, du bruit de fréquence et de la largeur de raie de VCSELs monomode,” Ph.D. dissertation (Université de Montpellier II, 2005).
  16. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991). [CrossRef]
  17. K. Kikuchi, “Effect of llf-type fm noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron. 25, 684–688 (1989). [CrossRef]
  18. A. Godone and F. Levi, “About the radiofrequency spectrum of a phase noise-modulated carrier,” in Proceedings of the 12th European Frequency and Time Forum (1998), pp. 392–396.
  19. A. Godone, S. Micalizio, and F. Levi, “Rf spectrum of a carrier with a random phase modulation of arbitrary slope,” Metrologia 45, 313–324 (2008). [CrossRef]
  20. S. Viciani, M. Gabrysch, F. Marin, F. M. di Sopra, M. Moser, and K. H. Gulden, “Line shape of a vertical cavity surface emitting laser,” Opt. Commun. 206, 89–97 (2002). [CrossRef]
  21. The modulation index β is defined as the ratio of the frequency deviation Δf over the modulation frequency fm, i.e., β=Δf/fm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited