OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4814–4824

Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors

John M. Tamkin, William J. Dallas, and Tom D. Milster  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. 4814-4824 (2010)
http://dx.doi.org/10.1364/AO.49.004814


View Full Text Article

Enhanced HTML    Acrobat PDF (1135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical design and tolerancing of aspheric or free-form surfaces require attention to surface form, structured surface errors, and nonstructured errors. We describe structured surface error profiles and effects on the image point-spread function using harmonic (Fourier) decomposition. Surface errors over the beam footprint map onto the pupil, where multiple structured surface frequencies mix to create sum and difference diffraction orders in the image plane at each field point. Difference frequencies widen the central lobe of the point-spread function and summation frequencies create ghost images.

© 2010 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1920) Optical design and fabrication : Diamond machining
(220.3620) Optical design and fabrication : Lens system design
(290.5838) Scattering : Scattering, in-field

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: May 12, 2010
Manuscript Accepted: June 21, 2010
Published: August 31, 2010

Citation
John M. Tamkin, William J. Dallas, and Tom D. Milster, "Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors," Appl. Opt. 49, 4814-4824 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-4814


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. E. Tohme, “Grinding aspheric and freeform micro-optical molds,” Proc. SPIE 6462, 64620K (2007). [CrossRef]
  2. D. Aikens, J. E. DeGroote, and R. N. Youngworth, “Specification and control of mid-spatial frequency wavefront errors in optical systems,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuA1.
  3. A. Beaucamp, R. Freeman, R. Morton, K. Ponudurai, and D. D. Walker, “Removal of diamond-turning signatures on x-ray mandrels and metal optics by fluid-jet polishing,” Proc. SPIE 7018, 701835 (2008). [CrossRef]
  4. H. Choi, W.-C. Kim, S.-H. Lee, N.-C. Park, and Y.-P. Park, “Effects of fabrication errors in the diffractive optical element on the modulation transfer function of a hybrid lens,” J. Opt. Soc. Am. A 25, 2764-2766 (2008). [CrossRef]
  5. M. Pfaff, “High-speed fabrication of aspheres and optical free-form surfaces,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThD6.
  6. P. Murphy, “Methods and challenges in quantifying mid-spatial frequencies,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuA3.
  7. S. Wang, S. To, C. F. Cheung, and W. B. Lee, “A study of the scallop generation mechanism in ultra-precision raster milling,” Key Eng. Mater. 364-366, 1262-1267 (2008). [CrossRef]
  8. Y. Tohme, “Trends in ultra-precision machining of freeform optical surfaces,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThC6.
  9. R. N. Youngworth and B. D. Stone, “Simple estimates for the effects of mid-spatial-frequency surface errors on image quality,” Appl. Opt. 39, 2198-2209 (2000). [CrossRef]
  10. M. Schulz, I. Weingaertner, C. Elster, and J. Gerhardt, “Low- and mid-spatial-frequency component measurement for aspheres,” Proc. SPIE 5188, 287-295 (2003), [CrossRef]
  11. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19-23 (1980). [CrossRef]
  12. J. M. Tamkin, “A study of image artifacts caused by structured mid-spatial frequency fabrication errors on optical surfaces,” Ph.D. dissertation (University of Arizona, 2010).
  13. J. W. Goodman, Introduction to Fourier optics, 3rd ed., (Roberts & Co., 2005).
  14. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London Ser. A 79, 399-416 (1907). [CrossRef]
  15. Harmonic decomposition is also called Fourier decomposition. The former usage will be maintained to prevent confusion with Fourier transform.
  16. E. Marx, T. A. Germer, T. V. Vorburger, and B. C. Park, “Angular distribution of light scattered from a sinusoidal grating,” Appl. Opt. 39, 4473-4485 (2000). [CrossRef]
  17. J. E. Harvey, A. Krywonos, and D. Bogunovic, “Nonparaxial scalar treatment of sinusoidal phase gratings,” J. Opt. Soc. Am. A 23, 858-865 (2006). [CrossRef]
  18. V. Greco, G. Molesini, and F. Quercioli, “Telescopes of Galileo,” Appl. Opt. 32, 6219-6226 (1993). [CrossRef] [PubMed]
  19. R. Smith, A Compleat System of Opticks in Four Books, viz A Popular, a Mathematical, a Mechanical and Philosophical Treatise (Cambridge University Press, 1738).
  20. F. Twyman, Prism and Lens Making (Hilger & Watts, 1952).
  21. T. T. Saito, “Machining of optics: an introduction,” Appl. Opt. 14, 1773-1776 (1975). [CrossRef] [PubMed]
  22. R. J. Noll, “Effect of mid and high spatial frequencies on optical performance,” Opt. Eng. 18, 137-142 (1979).
  23. U. Birnbaum, H. Bernitzki, O. Falkenstörfer, H. Lauth, R. Schreiner, and T. Waak, “Manufacturing of high-precision aspheres,” Proc. SPIE 6149, 61490H (2006). [CrossRef]
  24. S. To, H. Wang, B. Li, and C. F. Cheung, “An empirical approach to the identification of sources of machining errors in ultra-precision raster milling,” Key Eng. Mater. 364-366, 986-991 (2008). [CrossRef]
  25. Z. Q. Yin, S. To, and W. B. Lee, “Wear characteristics of diamond tool in ultraprecision raster milling,” Int. J. Adv. Manuf. Technol. 44, 638-647 (2009). [CrossRef]
  26. S. Rakuff and P. Beaudet, “Thermal and structural deformations during diamond turning of rotationally symmetric structured surfaces,” J. Manuf. Sci. Eng. 130, 041004 (2008). [CrossRef]
  27. M. L. Barkman, B. S. Dutterer, M. A. Davies, and T. J. Suleski, “Free-form machining for micro-imaging systems,” Proc. SPIE , 6883, 68830G (2008). [CrossRef]
  28. M. N. Cheng, C. F. Cheung, and W. B. Lee, “A study of factors affecting surface quality in ultra-precision raster milling,” Key Eng. Mater. 339, 400-406 (2007). [CrossRef]
  29. G. W. Forbes and C. P. Brophy, “Asphere, O asphere, how shall we describe thee?,” Proc. SPIE 7100, 710002 (2008). [CrossRef]
  30. J. R. Rogers, “Slope error tolerances for optical surfaces,” presented at the OptiFab Conference (SPIE, 2008), paper TD04-4, pp. 15-17.
  31. E. L. Church and J. M. Zavada, “Residual surface roughness of diamond-turned optics,” Appl. Opt. 14, 1788-1795 (1975). [CrossRef] [PubMed]
  32. J. C. Stover and J. E. Harvey, “Limitations of Rayleigh Rice perturbation theory for describing surface scatter,” Proc. SPIE 6672, 66720B (2007). [CrossRef]
  33. S. Shikama, “Effects of corrugation of aspherical mirrors on the optical performance of imaging optics with the mirror near an image plane,” Opt. Eng. 43, 3068-3076 (2004). [CrossRef]
  34. M. Shibuya, N. Watanabe, M. Yamamoto, T. Fukui, H. Ezaki, T. Kiire, and S. Nakadate, “Classification of undulated wavefront aberration in projection optics by considering its physical effects,” Opt. Eng. 46, 053001 (2007). [CrossRef]
  35. R. C. Juergens, R. H. Shepard III, and J. P. Schaefer, “Simulation of single-point diamond turning fabrication process errors,” Proc. SPIE 5174, 93-104 (2003). [CrossRef]
  36. T. B. A. Senior, “Scattering of electromagnetic waves by a corrugated sheet,” Can. J. Phys. 37, 787-797 (1959). [CrossRef]
  37. R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” J. Mod. Opt. 21, 413-421 (1974). [CrossRef]
  38. A. Wirgin, “Scattering from sinusoidal gratings: an evaluation of the Kirchhoff approximation,” J. Opt. Soc. Am. 73, 1028-1041 (1983). [CrossRef]
  39. M. J. Lighthill, Introduction to Fourier Analysis and Generalised Functions, Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, 1958).
  40. H. H. Barrett, Foundations of Image Science, H.H.Barrett and K.J.Myers, eds. (Wiley-Interscience, 2004).
  41. J. Mathews and R. L. Walker, Mathematical Methods of Physics, 2nd ed. (W. A. Benjamin, 1970).
  42. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th expanded ed. (Cambridge University Press, 1999). [PubMed]
  43. C. An, Q. Xu, F. Zhang, and J. Zhang, “Calculation and structural analysis for the rigidity of air spindle in the single point diamond turning lathe,” Proc. SPIE 6722, 67222U (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited