OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: 4836–4845

Multimode excitation-induced phase shifts in intrinsic Fabry–Perot interferometric fiber sensor spectra

Cheng Ma and Anbo Wang  »View Author Affiliations

Applied Optics, Vol. 49, Issue 25, pp. 4836-4845 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the modal analysis of optical fiber single-mode–multimode–single-mode intrinsic Fabry–Perot interferometer sensors. The multimode nature of the Fabry–Perot cavity gives rise to an additional phase term in the spectrogram due to intermodal dispersion-induced wavefront distortion, which could significantly affect the cavity length demodulation accuracy. By using an exact model to analyze the modal behavior, this phase term is explained by employing a rotating vector approach. Comparison of the theoretical analysis with experimental results is presented.

© 2010 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 30, 2010
Manuscript Accepted: July 22, 2010
Published: August 31, 2010

Cheng Ma and Anbo Wang, "Multimode excitation-induced phase shifts in intrinsic Fabry–Perot interferometric fiber sensor spectra," Appl. Opt. 49, 4836-4845 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Lee and H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991). [CrossRef]
  2. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80(1993). [CrossRef] [PubMed]
  3. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991). [CrossRef] [PubMed]
  4. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001). [CrossRef]
  5. Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photonics Technol. Lett. 7, 1471–1473 (1995). [CrossRef]
  6. N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997). [CrossRef]
  7. J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995). [CrossRef]
  8. A. D. Kersey and M. J. Marrone, “Bragg grating based nested fibre interferometers,” Electron. Lett. 32, 1221–1223 (1996). [CrossRef]
  9. Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19, 622–624 (2007). [CrossRef]
  10. T. Rossmanith, X. D. Jin, J. S. Sirkis, M. K. Park, V. Venkat, and B. D. Prasad, “Manufacturing of core mirrors for intrinsic Fabry-Perot interferometers using sol-gel process,” Proc. SPIE 3670, 34–40 (1999). [CrossRef]
  11. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006). [CrossRef] [PubMed]
  12. Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17, 2403–2405 (2005). [CrossRef]
  13. V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996). [CrossRef]
  14. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003). [CrossRef]
  15. F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt. 44, 5206–5214(2005). [CrossRef] [PubMed]
  16. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736–1738 (2004). [CrossRef] [PubMed]
  17. M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems,” Opt. Lett. 31, 1202–1204(2006). [CrossRef] [PubMed]
  18. M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers,” Appl. Opt. 43, 4659–4666 (2004). [CrossRef] [PubMed]
  19. A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003). [CrossRef]
  20. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356 (2009). [CrossRef]
  21. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2 doped multimode fiber,” IEEE Photonics Technol. Lett. 22, 799–801 (2010). [CrossRef]
  22. F. Shen, Z. Wang, W. Peng, K. Cooper, G. R. Pickrell, and A. Wang, “UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing,” Proc. SPIE 6174, 61740D (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited