OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: F1–F9

Lasers in refractive surgery: history, present, and future

Lance J. Kugler and Ming X. Wang  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. F1-F9 (2010)
http://dx.doi.org/10.1364/AO.49.0000F1


View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The history of laser refractive surgery is reviewed, followed by an overview of the current state of the field as well as a look at promising future developments.

© 2010 Optical Society of America

OCIS Codes
(140.2180) Lasers and laser optics : Excimer lasers
(330.7335) Vision, color, and visual optics : Visual optics, refractive surgery

ToC Category:
LASERS: THE FIRST FIFTY YEARS (INVITED ONLY)

History
Original Manuscript: January 28, 2010
Revised Manuscript: April 22, 2010
Manuscript Accepted: April 27, 2010
Published: June 1, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Lance J. Kugler and Ming X. Wang, "Lasers in refractive surgery: history, present, and future," Appl. Opt. 49, F1-F9 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-F1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Gordon and P. B. Donzis, “Refractive development of the human eye,” Arch. Ophthalmol. (Chicago) 103, 785–789(1985).
  2. S. Vitale, R. D. Sperduto, and F. L. Ferris III , “Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004,” Arch. Ophthalmol. (Chicago) 127, 1632–1639(2009). [CrossRef]
  3. V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg. 34, 1339–1344 (2008). [CrossRef] [PubMed]
  4. M. R. Chalita, S. Chavala, M. Xu, and R. R. Krueger, “Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography,” Ophthalmology annual 111, 447–453 (2004). [CrossRef]
  5. M. Sharma, B. S. Wachler, and C. C. Chan, “Higher order aberrations and relative risk of symptoms after LASIK,” J. Refract. Surg. 23, 252–256 (2007). [PubMed]
  6. A. Glasser and P. L. Kaufman, “Accommodation and presbyopia,” in Adler’s Physiology of the Eye: Clinical Application, P.L.Kaufman and A.Alm, eds., 10th ed. (St. Mosby, 2003), pp. 197–233.
  7. R. L. Epstein and M. A. Gurgos, “Presbyopia treatment by monocular peripheral presbyLASIK,” J. Refract. Surg. 25, 516–523 (2009). [PubMed]
  8. O. F. Yilmaz, S. Bayraktar, A. Agca, B. Yilmaz, M. B. McDonald, and C. van de Pol, “Intracorneal inlay for the surgical correction of presbyopia,” J. Cataract. Refract. Surg. 34, 1921–1927 (2008). [CrossRef] [PubMed]
  9. D. Covert, C. Henry, and S. B. Koenig, “Intraocular lens power selection in the second eye of patients undergoing bilateral, sequential cataract extraction,” Ophthalmology annual 117, 49–54 (2010). [CrossRef]
  10. C. A. Sandstedt, S. H. Chang, R. H. Grubbs, and D. M. Schwartz, “Light-adjustable lens: customizing correction for multifocality and higher-order aberrations,” Trans. Am. Ophthalmol. Soc. 104, 29–39 (2006).
  11. M. Lipner, “Out of the corneal box: the femtosecond laser extends its reach,” EyeWorld , Dec. 2009, pp. 26–27.
  12. Z. Sacks, R. Kurtz, T. Juhasz, G. Spooner, and G. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging. 34, 104–113(2003). [PubMed]
  13. C. N. J. McGhee, H. R. Taylor, D. S. Gartry, and S. L. Trokel, Excimer Lasers in Ophthalmology: Principles and Practice (Martin Duntz, 1997).
  14. J. J. Machat, Excimer Laser Refractive Surgery (Slack, 1996).
  15. G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg. 31, 127–135 (2005). [CrossRef] [PubMed]
  16. Visx Star S4 Users Training Manual (Abbott Laboratories, 2009).
  17. B. Green and R. Aguilar, Technical Services, Alcon Manufacturing, Ltd., 15800 Alton Parkway, Irvine, Calif. 92618 (personal communication, 2010).
  18. WaveLight, “Technical Data and References,” http://www.wavelight.com/admin.tool/_cms/int/Content/na/Wyv8pTLpPhADT0xG1COFYA5lfgTj6SHUYAAChGj@0AAAAK/0,2637.html.
  19. G. A. Peyman, B. Larson, M. Raichand, and A. H. Andrews, “Modification of rabbit corneal curvature with use of carbon dioxide laser burns,” Ophthalmic Surg. 11, 325–329 (1980). [PubMed]
  20. J. Taboada and C. J. Archibald, “An extreme sensitivity in the corneal epithelium to far UV ArF excimer laser pulses,” presented at Scientific Meeting of the Aerospace Medical Association, San Antonio, Texas, 1981.
  21. S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96, 710–715(1983). [PubMed]
  22. T. Seiler, G. Kahle, and M. Kriegerowski, “Excimer laser (193nm) myopic keratomileusis in sighted and blind human eyes,” Refract. Corneal Surg, 6, 383–385 (1990).
  23. C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy:a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988). [PubMed]
  24. M. B. McDonald, R. Beuerman, W. Falzoni, L. Rivera, and H. E. Kaufman, “Refractive surgery with the excimer laser,” Am. J. Ophthalmol. 103, 469 (1987). [PubMed]
  25. M. B. McDonald, J. M. Frantz, S. D. Klyce, B. Salmeron, R. W. Beuerman, C. R. Munnerlyn, T. N. Clapham, S. J. Koons, and H. E. Kaufman, “One-year refractive results of central photorefractive keratectomy for myopia in the nonhuman primate cornea,” Arch. Ophthalmol. (Chicago) 108, 40–47 (1990).
  26. I. Pallikaris, M. Papatsanaki, E. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990). [CrossRef] [PubMed]
  27. M. Wang, LASIK Vision Correction (Med World, 2000).
  28. A. Sugar, C. J. Rapuano, W. W. Culbertson, D. Huang, G. A. Varley, P. J. Agapitos, V. P. de Luise, and D. D. Koch, “Laser in situ keratomileusis for myopia and astigmatism: safety and efficacy: a report by the American Academy of Ophthalmology,” Ophthalmology Annual 109, 175–187 (2002). [CrossRef]
  29. M. R. Chalita, M. Xu, and R. R. Krueger, “Correlation of aberrations with visual symptoms using wavefront analysis in eyes after laser in situ keratomileusis,” J. Refract. Surg. 19, S682–S686 (2003). [PubMed]
  30. S. C. Schallhorn, A. Farjo, D. Huang, B. S. Boxer Wachler, W. B. Trattler, D. J. Tanzer, P. A. Majmudar, and A. Sugar, “Wavefront-guided LASIK for the correction of primary myopia and astigmatism: a report by the American Academy of Ophthalmology,” Ophthalmology annual 115, 1249–1261(2008). [CrossRef]
  31. J. Holladay, “Fewer high order aberrations yields better visual performance,” EyeWorld Supplement , May 2008.
  32. E. H. Myrowitz and R. S. Chuck, “A comparison of wavefront-optimized and wavefront-guided ablations,” Curr. Opin. Ophthalmol. 20, 247–250 (2009). [CrossRef] [PubMed]
  33. P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, “Wavefront-guided versus wavefront-optimized fewer in situ keratomileusis: contralateral comparative study,” J. Cataract Refract. Surg. 34, 389–397 (2008). [CrossRef] [PubMed]
  34. K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTTO WAVE: three-month results of a prospective FDA trial,” J. Refrac. Surg. 24, S424–S430 (2008).
  35. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886(1999). [CrossRef]
  36. T. Juhasz, F. H. Loesel, R. M. Kurtz, Ch. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J Sel. Top. Quantum Electron. 5, 902–910(1999). [CrossRef]
  37. D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625nm,” Arch. Ophthalmol. (Chicago) 107, 587–592 (1989).
  38. M. D. Perry and G. Mourou, “Terrawatt to petawatt class sub picosecond lasers,” Science 264, 917–924 (1994). [CrossRef] [PubMed]
  39. R. M. Kurz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Plasma-mediated ablation in human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).
  40. H. Soong and J. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147, 189–197 (2009). [CrossRef]
  41. I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19, 94–103 (2003). [PubMed]
  42. B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbé, and C. Baudouin, “In vivo corneal confocal microscopy comparison of Intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 47, 2803–2811 (2006). [CrossRef]
  43. J. H. Talamo, J. Meltzer, and J. Gardner, “Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes,” J. Refract. Surg. 22, 556–561(2006). [PubMed]
  44. G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg. 30, 804–811 (2004). [CrossRef] [PubMed]
  45. J. L. Alió and D. P. Pinero, “Very high-frequency digital ultrasound measurement of the LASIK flap thickness profile using the IntraLase femtosecond laser and M2 and Carriazo–Pendular microkeratomes,” J. Refract. Surg. 24, 12–23 (2008). [PubMed]
  46. M. Wevill, “Plasma vs steel; results of more than 20,000 cases,” presented at Abbott Medical Optics Inc. sponsored symposia, ESCRS Annual Meeting, Barcelona, Spain, 12–16 Sept. 2009.
  47. M. Tanna, S. C. Schallhorn, and K. A. Hettinger, “Femtosecond laser versus microkeratome: a retrospective comparison of visual outcomes at 3 months,” J. Refract. Surg. 25 (7 Suppl), S668–S671 (2009). [PubMed]
  48. B. Wachler and M. Wevill, “Mechanical microkeratome versus femtosecond laser,” Cataract and Refractive Surgery Today Europe, Jan. 2010, pp. 28–33.
  49. FTN Equity Capital Markets Corp.,“LASIK report,” 15 Jan. 2010.
  50. MarketScope, “Comprehensive report on the global refractive surgery market,” 2006.
  51. L. Buzzonetti, G. Petrocelli, A. Laborante, E. Mazzilli, M. Gaspari, and P. Valente, “Arcuate keratotomy for high postoperative keratoplasty astigmatism performed with the IntraLase femtosecond laser,” J. Refract. Surg. 25, 709–714 (2009). [CrossRef] [PubMed]
  52. L. A. Ruiz, L. M. Cepeda, and V. C. Fuentes, “Intrastromal correction of presbyopia using a femtosecond laser system,” J. Refract. Surg. 25, 847–854 (2009). [CrossRef] [PubMed]
  53. M. Wang, Corneal Topography in the Wavefront Era: a Guide for Clinical Application (Slack, 2006).
  54. M. Wang, “Future direction: technological development and treating the problem at its source,” in Irregular Astigmatism: Diagnosis and Treatment, M.Wang, ed. (Slack, 2008), pp 279–284.
  55. N. Alpins and G. Stamatelatos, “Clinical outcomes of laser in situ keratomileusis using combined topography and refractive wavefront treatments for myopic astigmatism,” J. Cataract Refract. Surg. 34, 1250–1259 (2008). [CrossRef] [PubMed]
  56. N. Alpins, “Astigmatism analysis by the Alpins method,” J. Cataract Refract. Surg. 27, 31–49 (2001). [CrossRef] [PubMed]
  57. K. D. Solomon, L. E. Fernández de Castro, H. P. Sandoval, J. M. Biber, B. Groat, K. D. Neff, M. S. Ying, J. W. French, E. D. Donnenfeld, and R. L. Lindstrom, “LASIK world literature review: quality of life and patient satisfaction,” Ophthalmology annual 116, 691–701 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited