OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: F10–F17

Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy

Adrian F. Pegoraro, Aaron D. Slepkov, Andrew Ridsdale, John Paul Pezacki, and Albert Stolow  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. F10-F17 (2010)
http://dx.doi.org/10.1364/AO.49.000F10


View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Short laser pulse technology has significantly contributed to biomedical research, especially via nonlinear optical microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free, chemical-selective method that is growing in importance as improved methods and light sources develop. Here we discuss different approaches to laser source development for CARS microscopy and highlight the advantages of a multimodal CARS microscope, illustrated by selected applications in biomedical research.

© 2010 Optical Society of America

OCIS Codes
(170.5810) Medical optics and biotechnology : Scanning microscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
LASERS: THE FIRST FIFTY YEARS (INVITED ONLY)

History
Original Manuscript: February 17, 2010
Revised Manuscript: April 4, 2010
Manuscript Accepted: April 26, 2010
Published: June 1, 2010

Virtual Issues
(2010) Advances in Optics and Photonics
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Adrian F. Pegoraro, Aaron D. Slepkov, Andrew Ridsdale, John Paul Pezacki, and Albert Stolow, "Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy," Appl. Opt. 49, F10-F17 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-F10


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.B.Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006). [CrossRef]
  2. T. Betz, J. Teipel, D. Koch, W. Hartig, J. Guck, J. Kas, and H. Giessen, “Excitation beyond the monochromatic laser limit: simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source,” J. Biomed. Opt. 10, 054009 (2005). [CrossRef] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  4. W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  5. P. J. Campagnola, M.-d. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999). [CrossRef] [PubMed]
  6. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999). [CrossRef] [PubMed]
  7. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352(1982). [CrossRef] [PubMed]
  8. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  9. J.-X. Cheng and X. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004). [CrossRef]
  10. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D 38, R59–R81 (2005). [CrossRef]
  11. J.-X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Appl. Spectrosc. 61, 197–208 (2007). [CrossRef] [PubMed]
  12. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008). [CrossRef]
  13. J.-x. Cheng, A. Volkmer, L. Book, and X. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001). [CrossRef]
  14. D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, “Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-Stokes Raman scattering microscopy,” Rev. Sci. Instrum. 73, 2843–2848 (2002). [CrossRef]
  15. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006). [CrossRef] [PubMed]
  16. “Fluoview FV1000MPE femtocars add-on,” http://www.olympusamerica.com/seg_section/product.asp?product=1068&intCmp=seg_rdct_cars (2010).
  17. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17, 2984–2996 (2009). [CrossRef] [PubMed]
  18. B. R. Masters, P. T. C. So, C. Buehler, N. Barry, J. D. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9, 1265–1270 (2004). [CrossRef] [PubMed]
  19. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113–115 (1999). [CrossRef]
  20. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80, 2029–2036(2001). [CrossRef] [PubMed]
  21. Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14, 3942–3951 (2006). [CrossRef] [PubMed]
  22. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007). [CrossRef] [PubMed]
  23. G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34, 2847–2849 (2009). [CrossRef] [PubMed]
  24. E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Ultrafast nonlinear spectroscopy with chirped optical pulses,” Phys. Rev. Lett. 68, 514–517 (1992). [CrossRef] [PubMed]
  25. K. Duppen, F. de Haan, E. T. J. Nibbering, and D. A. Wiersma, “Chirped four-wave mixing,” Phys. Rev. A 47, 5120–5137(1993). [CrossRef] [PubMed]
  26. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004). [CrossRef]
  27. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008). [CrossRef]
  28. M. N. Slipchenko, T. T. Le, H. Chen, and J.-X. Cheng, “High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy,” J. Phys. Chem. B 113, 7681–7686 (2009). [CrossRef] [PubMed]
  29. M. Cui, B. R. Bachler, and J. P. Ogilvie, “Comparing coherent and spontaneous Raman scattering under biological imaging conditions,” Opt. Lett. 34, 773–775 (2009). [CrossRef] [PubMed]
  30. M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002). [CrossRef]
  31. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498(2002). [CrossRef]
  32. H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” Chem. PhysChem. 8, 279–287 (2007). [CrossRef]
  33. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002). [CrossRef] [PubMed]
  34. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 480–482 (2006). [CrossRef] [PubMed]
  35. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006). [CrossRef] [PubMed]
  36. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 1934–1938 (2005). [CrossRef]
  37. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006). [CrossRef] [PubMed]
  38. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006). [CrossRef] [PubMed]
  39. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34, 2051–2053 (2009). [CrossRef] [PubMed]
  40. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007). [CrossRef] [PubMed]
  41. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17, 20700–20706 (2009). [CrossRef] [PubMed]
  42. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  43. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003). [CrossRef]
  44. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005). [CrossRef] [PubMed]
  45. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. USA 98, 1577–1582 (2001). [CrossRef] [PubMed]
  46. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509(2002). [CrossRef] [PubMed]
  47. X. Nan, A. M. Tonary, A. Stolow, X. S. Xie, and J. P. Pezacki, “Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-Stokes Raman scattering microscopies,” ChemBioChem 7, 1895–1897 (2006). [CrossRef] [PubMed]
  48. R. K. Lyn, D. C. Kennedy, S. M. Sagan, D. R. Blais, Y. Rouleau, A. F. Pegoraro, X. S. Xie, A. Stolow, and J. P. Pezacki, “Direct imaging of the disruption of hepatitis c virus replication complexes by inhibitors of lipid metabolism,” Virology 394, 130–142 (2009). [CrossRef] [PubMed]
  49. M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Development of an animal model for spontaneous myocardial infarction (WHHLMI Rabbit),” Arterioscler. Thromb. Vasc. Biol. 23, 1239–1244 (2003). [CrossRef] [PubMed]
  50. C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164, 140–145 (2008). [CrossRef] [PubMed]
  51. F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93, 1312–1320(2007). [CrossRef] [PubMed]
  52. Y. Fu, T. B. Huff, H.-W. Wang, J.-X. Cheng, and H. Wang, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16, 19396–19409 (2008). [CrossRef] [PubMed]
  53. E. Bélanger, S. Bégin, S. Laffray, Y. D. Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17, 18419–18432 (2009). [CrossRef]
  54. F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123, 123S–130S (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited