OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: F18–F31

Miniaturization of free space optical systems

Olav Solgaard  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. F18-F31 (2010)
http://dx.doi.org/10.1364/AO.49.000F18


View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent illumination enables not only integrated optics, but also miniaturized free-space optics that takes advantage of the amplitude and phase control afforded by optical microelectromechanical systems (MEMS) and photonic crystals. These technologies also provide a practical and cost-effective means for integration and packaging of optical systems. The properties of miniaturized optical systems based on optical MEMS and photonic crystals are described, and efficient analysis and design approaches to miniaturized optical scanners and tunable diffractive optical elements are demonstrated. The impact of photonic crystals on free-space micro-optics is discussed.

© 2010 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
LASERS: THE FIRST FIFTY YEARS (INVITED ONLY)

History
Original Manuscript: January 11, 2010
Manuscript Accepted: April 19, 2010
Published: June 24, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Olav Solgaard, "Miniaturization of free space optical systems," Appl. Opt. 49, F18-F31 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-F18


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hagerman, “Optimum spot size for raster-scanned monochrome CRT displays,” J. Soc. Inf. Disp. 1, 367–369 (1993). [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  3. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
  4. H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16, 7224–7232(2008). [CrossRef]
  5. W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009). [CrossRef]
  6. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020(2006). [CrossRef]
  7. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34, 2309–2311 (2009). [CrossRef]
  8. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008). [CrossRef]
  9. E. M. Kim and D. L. Franzen, “Measurement of far-field and near-field radiation patterns from optical fibers,” Report NBS-TN-1032 (National Bureau of Standards, 1981).
  10. U. Krishnamoorthy, Design and fabrication of micromirrors for optical application,” Ph.D. thesis (University of California, Davis, 2002).
  11. E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photonic Technol. Lett. 6, 657–660 (1994).
  12. T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” J. Microelectromech. Syst. 6, 10–17 (1997). [CrossRef]
  13. S.-S Lee, L.-S Huang, C.-J Kim, and M. C. Wu, “Free-space fiber-optic switches based on MEMS vertical torsion mirrors,” J. Lightwave Technol. 17, 7–13 (1999). [CrossRef]
  14. M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996). [CrossRef]
  15. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 2001).
  16. O. Solgaard, Photonic Microsystems (Springer, 2009).
  17. L. J. Hornbeck, “Deformable-mirror spatial-light modulators,” Proc. SPIE 1150, 86–102 (1990).
  18. L. J. Hornbeck, “The DMD projection display chip: a MEMS-based technology,” Mater. Res. Bull. 26, 325–327(2001).
  19. E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).
  20. V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.
  21. H. Lee, M. H. Miller, and T. G. Bifano, “CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration,” J. Micromech. Microeng. 14, 108–115 (2004). [CrossRef]
  22. I. W. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical comb drives,” J. Microelectromech. Syst. 15, 563–571 (2006). [CrossRef]
  23. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “A deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992). [CrossRef]
  24. S. R. Kubota, “The grating light valve projector,” Opt. Photon. News 13, 50–53 (2002).
  25. A. Godil, “Diffractive MEMS technology offers a new platform for optical networks,” Laser Focus World (2002).
  26. J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10, 609–611 (1985). [CrossRef]
  27. A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302(1988). [CrossRef]
  28. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997). [CrossRef]
  29. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001). [CrossRef]
  30. K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.
  31. P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, “Scalable optical cross-connect switch using micromachined mirrors,” IEEE Photonics Technol. Lett. 12, 882–884(2000). [CrossRef]
  32. J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, “Wavelength add-drop switching using tilting micromirrors,” J. Lightwave Technol. 17, 904–11 (1999). [CrossRef]
  33. R. A. Deverse, R. M. Hammaker, and W. G. Fateley, “Realization of the Hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer,” Appl. Spectrosc. 54, 1751–1758 (2000). [CrossRef]
  34. D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.
  35. G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998). [CrossRef]
  36. A. F. Sarioglu and O. Solgaard, “Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy,” Appl. Phys. Lett. 93, 023114 (2008). [CrossRef]
  37. N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002). [CrossRef]
  38. H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).
  39. N. A. Hall and F. L. Degertekin, “Self-calibrating micromachined microphones with integrated optical displacement detection,” Transducers 01 (IEEE, 2001, pp. 118–121.
  40. L. Wook, N. A. Hall, Z. Zhiping, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004). [CrossRef]
  41. S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997). [CrossRef]
  42. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002). [CrossRef]
  43. C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003). [CrossRef]
  44. J. H. Jerman and S. R. Mallinson, “A miniature Fabry–Perot interferometer fabricated using silicon micromachining techniques,” 1988 Solid State Sensor and Actuator Workshop (IEEE, 1988), pp. 16–18.
  45. D. Hohlfeld and H. Zappe, “All-dielectric tunable optical filter based on the thermo-optic effect,” J. Opt. A: Pure Appl, Opt. 6, 504–511 (2004).
  46. M.-C. M. Lee, and M. C. Wu, “Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators,” Opt. Lett. 31, 2444–2446 (2006). [CrossRef]
  47. Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009). [CrossRef]
  48. W. Suh, M. F. Yanik, O. Solgaard, and S.-H Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003). [CrossRef]
  49. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004). [CrossRef]
  50. O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004). [CrossRef]
  51. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
  52. S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, “Single-film broadband photonic crystal micro-mirror with large angular range and low polarization dependence,” Conference on Lasers and Electro-Optics, 2007 (IEEE, 2007), paper CThP7.
  53. I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst. 18, 924–932 (2009). [CrossRef]
  54. O. Kilic, S. Fan, and O. Solgaard, “Analysis of guided-resonance based polarization beam splitting in photonic crystal slabs,” J. Opt. Soc. Am. A 25, 2680–2692 (2008).
  55. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102(2005). [CrossRef]
  56. D. W. Carr, J. P. Sullivan, and T. A. Friedmann, “Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis,” Opt. Lett. 28, 1636–1638 (2003). [CrossRef]
  57. B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedmann, and J. R. Wendt, “Experimental demonstration of a laterally deformable nanoelectromechanical system grating transducer,” Opt. Lett. 29, 1182–1184 (2004). [CrossRef]
  58. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18, 3049–3054 (2007). [CrossRef]
  59. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics,” Proc. SPIE 7004, 700405 (2008).
  60. I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.
  61. I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.
  62. R. Magnusson and D. Wawro, “Guided-mode resonance sensors for biochemical screening,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2008), pp. 228–229.
  63. X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21, 1691–1699 (2003). [CrossRef]
  64. M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006). [CrossRef]
  65. R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photics Technol. Lett. 18, 1479–1481(2006).
  66. W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28, 1763–1765 (2003). [CrossRef]
  67. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005). [CrossRef]
  68. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited