OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: F59–F70

Optical interconnects to electronic chips

David A. B. Miller  »View Author Affiliations


Applied Optics, Vol. 49, Issue 25, pp. F59-F70 (2010)
http://dx.doi.org/10.1364/AO.49.000F59


View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical interconnects are progressively replacing wires at shorter and shorter distances in information processing machines. This paper summarizes the progress toward and prospects for the penetration of optics all the way to the silicon chip.

© 2010 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(200.4650) Optics in computing : Optical interconnects

ToC Category:
LASERS: THE FIRST FIFTY YEARS (INVITED ONLY)

History
Original Manuscript: February 24, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: June 21, 2010
Published: July 14, 2010

Citation
David A. B. Miller, "Optical interconnects to electronic chips," Appl. Opt. 49, F59-F70 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-25-F59


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989). [CrossRef]
  2. D. A. B. Miller, “Device requirements for digital optical processing,” in Digital Optical Computing, R.A.Athale, ed., SPIE Critical Reviews of Optical Science and Technology (SPIE, 1990), Vol. CR35, pp. 68–76.
  3. D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput. 41, 42–52(1997).
  4. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11(3), 155–168 (1997).
  5. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000). [CrossRef]
  6. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6, 1312–1317 (2000). [CrossRef]
  7. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
  8. D. A. B. Miller, “Are optical transistors the next logical step?,” Nat. Photon. 4, 3–5 (2010). [CrossRef]
  9. K. C. Saraswat and F. Mohammadi, “Effect of scaling of interconnections on the time delay of VLSI circuits,” IEEE Trans. Electron Devices 29, 645–650 (1982). [CrossRef]
  10. R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc. IEEE 89, 490–504 (2001). [CrossRef]
  11. “International technology roadmap for semiconductors,” http://www.itrs.net/.
  12. D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein, D. G. Messerschmitt, P. Messina, J. P. Ostriker, and M. H. Wright, Final Report of the NSF Blue Ribbon Advisory Panel on Cyberinfrastructure: Revolutionizing Science and Engineering Through Cyberinfrastructure (NSF, January 2003), http://www.nsf.gov/cise/sci/reports/atkins.pdf.
  13. B. Kim and V. Stojanovic, “Characterization of equalized and repeated interconnects for NoC applications,” IEEE Design Test Comput. 25, 430–439 (2008).
  14. W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Design Test Comput. 22, 498–510 (2005).
  15. K.-H. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron Devices 54, 3206–3215 (2007). [CrossRef]
  16. H. Cho, K.-H. Koo, P. Kapur, and D. C. Saraswat, “Performance comparisons between Cu/low-κ, carbon-nanotube, and optics for future on-chip interconnects,” IEEE Electron Device Lett. 29, 122–124 (2008). [CrossRef]
  17. K.-N. Chen, M. J. Kobrinsky, B. C. Barnett, and R. Reif, “Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution,” IEEE Trans. Electron Devices 51, 233–239 (2004). [CrossRef]
  18. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically-interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9, 477–485 (2003). [CrossRef]
  19. C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003). [CrossRef]
  20. D. A. B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, and M. A. Horowitz, “Opportunities for optics in integrated circuits applications,” International Solid State Circuits Conference, 2005 (IEEE, 2005), paper 4.6, pp. 86–87.
  21. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008). [CrossRef]
  22. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008). [CrossRef]
  23. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. L. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
  24. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26, 79–84 (2008). [CrossRef]
  25. N. Streibl, K.-H. Brenner, A. Huang, J. Jahns, J. Jewell, A. W. Lohmann, D. A. B. Miller, M. Murdocca, M. E. Prise, and T. Sizer, “Digital optics,” Proc. IEEE 77, 1954–1969 (1989). [CrossRef]
  26. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, and E. Kerbis, “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices,” Appl. Opt. 32, 5153–5171 (1993). [CrossRef]
  27. B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Top. Quantum Electron. 9, 486–491 (2003). [CrossRef]
  28. A V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996). [CrossRef]
  29. A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron Devices 54, 3252–3259 (2007). [CrossRef]
  30. K. W. Goossen, G. D. Boyd, J. E. Cunningham, W. Y. Jan, D. A. B. Miller, D. S. Chemla, and R. M. Lum, “GaAs-AlGaAs multiquantum well reflection modulators grown on GaAs and silicon substrates,” IEEE Photonics Technol. Lett. 1, 304–306(1989). [CrossRef]
  31. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  32. M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12, 1520–1526(2006). [CrossRef]
  33. A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol. 23, 064001 (2008). [CrossRef]
  34. Z. Huang, N. Kong, X. Guo, M. Liu, N. Duan, A. L. Beck, S. K. Banerjee, and J. C. Campbell, “21GHz-Bandwidth germanium-on-silicon photodiode using thin SiGe buffer layers,” IEEE J. Sel. Top. Quantum Electron. 12, 1450–1454 (2006). [CrossRef]
  35. D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007). [CrossRef]
  36. Y.-H. Kuo, Y.-K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
  37. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15, 5851–5859 (2007). [CrossRef]
  38. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008). [CrossRef]
  39. G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2004).
  40. L.Pavesi and D. J. Lockwood, eds., Silicon Photonics (Springer-Verlag, 2004).
  41. G. I. Yayla, P. J. Marchand, and S. C. Esener, “Speed and energy analysis of digital interconnections: comparison of on-chip, off-chip, and free-space technologies,” Appl. Opt. 37, 205–227 (1998). [CrossRef]
  42. D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: the quantum-confined Franz–Keldysh effect,” Phys. Rev. B 33, 6976–6982 (1986). [CrossRef]
  43. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, Jr., “Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,” Opt. Lett. 25, 1502–1504 (2000). [CrossRef]
  44. T. Baba and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE J. Quantum Electron. 38, 909–914 (2002). [CrossRef]
  45. K. Jia, J. Yang, Y. Hao, X. Jiang, M. Wang, W. Wang, Y. Wu, and Y. Wang, “Turning-mirror-integrated arrayed-waveguide gratings on silicon-on-insulator,” IEEE J. Sel. Top. Quantum Electron. 12, 1329–1334 (2006). [CrossRef]
  46. S. Zheng, H. Chen, and A. W. Poon, “Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence,” IEEE J. Sel. Top. Quantum Electron. 12, 1380–1387 (2006). [CrossRef]
  47. F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM (de-)multiplexers in SOI technology based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R (2008). [CrossRef]
  48. J. Brouckaert, W. Bogaerts, S. Sevaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photonics Technol. Lett. 20, 309–311 (2008). [CrossRef]
  49. M. Gerken and D. A. B. Miller, “Multilayer thin-film stacks With steplike spatial beam shifting,” J. Lightwave Technol. 22, 612–618 (2004). [CrossRef]
  50. M. Gerken and D. A. B. Miller, “Limits to the performance of dispersive thin-film stacks,” Appl. Opt. 44, 3349–3357 (2005). [CrossRef]
  51. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008). [CrossRef]
  52. L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706–708 (2009). [CrossRef]
  53. I. Fushman, D. Englund, A. Faraon, N. Stolz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef]
  54. R. W. Keyes and J. A. Armstrong, “Thermal limitations in optical logic,” Appl. Opt. 8, 2549–2552 (1969). [CrossRef]
  55. P. W. Smith, “On the physical limits of digital optical switching and logic elements,” Bell Syst. Tech. J. 61, 1975–1993 (1982).
  56. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979). [CrossRef]
  57. D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal. Application of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979). [CrossRef]
  58. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  59. J. Jahns and A. Huang, “Planar integration of free—space optical components,” Appl. Opt. 28, 1602–1605 (1989). [CrossRef]
  60. M. E. Prise, N. C. Craft, M. M. Downs, R. E. LaMarche, L. A. D’Asaro, L. M. F. Chirovsky, and M. J. Murdocca, “Optical digital processor using arrays of symmetric self-electrooptic effect devices,” Appl. Opt. 30, 2287–2296 (1991). [CrossRef]
  61. R. G. A. Craig, B. S. Wherrett, A. C. Walker, F. A. P. Tooley, and S. D. Smith, “Optical cellular logic image processor: implementation and programming of a single channel digital optical circuit,” Appl. Opt. 30, 2297–2308 (1991). [CrossRef]
  62. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: optical set-reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988). [CrossRef]
  63. J. W. Goodman, F. J. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  64. K. Iga, F. Koyama, and S. Konoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24, 1845–1855(1988). [CrossRef]
  65. J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1124 (1989). [CrossRef]
  66. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev. B 32, 1043–1060 (1985). [CrossRef]
  67. D. A. B. Miller, “Quantum-well self-electro-optic effect devices,” Opt. Quantum Electron. 22, S61–S98 (1990). [CrossRef]
  68. A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993). [CrossRef]
  69. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751(1988). [CrossRef]
  70. H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightwave Technol. 22, 2021–2033 (2004). [CrossRef]
  71. A. Naeemi, J. Xu, A. V. Mule, T. K. Gaylord, and J. D. Meindl, “Optical and electrical interconnect partition length based on chip-to-chip bandwidth maximization,” IEEE Photonics Technol. Lett. 16, 1221–1223 (2004). [CrossRef]
  72. A. V. Krishnamoorthy and K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899–912 (1998). [CrossRef]
  73. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibenguth, S. P. Hui, G. J. Zydzik, K. W. Goossen, J. D. Wynn, B. J. Tseng, J. Lopata, J. A. Walker, J. E. Cunningham, and L. A. D’Asaro, “Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits,” IEEE Photonics Technol. Lett. 11, 128–130 (1999). [CrossRef]
  74. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, and M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999). [CrossRef]
  75. A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H. P. Gauggel, K. H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, and M. P. Y. Desmulliez, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 236–249 (1999). [CrossRef]
  76. M. B. Venditti, E. Laprise, J. Faucher, P.-O Laprise, J. Eduardo, A. Lugo, and D. V. Plant, “Design and test of an optoelectronic-vlsi chip with 540-element receiver-transmitter arrays using differential optical signaling,” IEEE J. Sel. Top. Quantum Electron. 9, 361–379 (2003). [CrossRef]
  77. P. Lukowicz, J. Jahns, R. Barbieri, P. Benabes, T. Bierhoff, A. Gauthier, M. Jarczynski, G. A. Russell, J. Schrage, W. Sullau, J. F. Snowdon, M. Wirz, and G. Troster, “Optoelectronic interconnection technology in the Holms system,” IEEE J. Sel. Top. Quantum Electron. 9, 624–635(2003).
  78. R. Barbieri, P. Benabes, T. Bierhoff, J. J. Caswell, A. Gauthier, J. Jahns, M. Jarczynski, P. Lukowicz, J. Oksman, G. A. Russell, J. Schrage, J. F. Snowdon, O. Stübbe, G. Troster, and M. Wirz, “Design and construction of the high-speed optoelectronic memory system demonstrator,” Appl. Opt. 47, 3500–3512 (2008). [CrossRef]
  79. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160Gb/s Bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Advanced Packaging 32, 345–359 (2009).
  80. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006). [CrossRef]
  81. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “A Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited