OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 25 — Sep. 1, 2010
  • pp: F79–F98

Laser-based displays: a review

Kishore V. Chellappan, Erdem Erden, and Hakan Urey  »View Author Affiliations

Applied Optics, Vol. 49, Issue 25, pp. F79-F98 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2235 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



After the invention of lasers, in the past 50 years progress made in laser-based display technology has been very promising, with commercial products awaiting release to the mass market. Compact laser systems, such as edge-emitting diodes, vertical-cavity surface-emitting lasers, and optically pumped semiconductor lasers, are suitable candidates for laser-based displays. Laser speckle is an important concern, as it degrades image quality. Typically, one or multiple speckle reduction techniques are employed in laser displays to reduce speckle contrast. Likewise, laser safety issues need to be carefully evaluated in designing laser displays under different usage scenarios. Laser beam shaping using refractive and diffractive components is an integral part of laser displays, and the requirements depend on the source specifications, modulation technique, and the scanning method being employed in the display. A variety of laser-based displays have been reported, and many products such as pico projectors and laser televisions are commercially available already.

© 2010 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.2040) Instrumentation, measurement, and metrology : Displays
(140.2010) Lasers and laser optics : Diode laser arrays
(140.3300) Lasers and laser optics : Laser beam shaping
(080.2175) Geometric optics : Etendue
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:

Original Manuscript: January 11, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: July 9, 2010
Published: August 4, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Kishore V. Chellappan, Erdem Erden, and Hakan Urey, "Laser-based displays: a review," Appl. Opt. 49, F79-F98 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Korpel, R. Adler, P. Desmares, and W. Watson, “A television display using acoustic deflection and modulation of coherent light,” Appl. Opt. 5, 1667–1675 (1966). [CrossRef]
  2. Y. Kim, H. W. Lee, S. Cha, J.-H. Lee, Y. Park, J. Park, S. S. Hong, and Y. M. Hwang, “Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology,” Proc. SPIE 3131, 2–10 (1997). [CrossRef]
  3. D. E. Hargis, R. Bergstedt, A. M. Earman, P. Gullicksen, R. Hurtado, A. P. Minich, S. E. Nelte, D. P. Ornelas, M. A. Pessot, E. B. Takeuchi, B. D. Vivian, and J. H. Zarrabi, “Diode-pumped microlasers for display applications,” Proc. SPIE 3285, 115–125 (1998). [CrossRef]
  4. M. Scholles, K. Frommhagen, C. Gerwig, J. Knobbe, H. Lakner, D. Schlebusch, M. Schwarzenberg, and U. Vogel, “Recent advancements in system design for miniaturized MEMS-based laser projectors,” Proc. SPIE 6911, 69110U (2008). [CrossRef]
  5. C. Deter and J. Kraenert, “High-resolution scanning laser projection display with diode-pumped solid state lasers,” Proc. SPIE 3954, 175–184 (2000). [CrossRef]
  6. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962). [CrossRef]
  7. M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962). [CrossRef]
  8. T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962). [CrossRef]
  9. Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold,” Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969).
  10. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970). [CrossRef]
  11. Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol. 26, 1132–1144 (2008). [CrossRef]
  12. Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics (Optical Society of America, 2009), paper WE1.
  13. P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009). [CrossRef]
  14. K. Du, M. Baumann, B. Ehlers, H. G. Treusch, and P. Loosen, “Fiber-coupling technique with micro step-mirrors for high-power diode laser bars,” in Advanced Solid State Lasers, C.Pollock and W.Bosenberg, eds. (Optical Society of America, 1997), Vol. 10.
  15. J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in IEEE 59th Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.
  16. R. McBride, H. Baker, J.-L. Neron, S. Doric, C. Mariottini, E. Nava, E. Stucchi, and P. Milanesi, “A high-brightness QCW pump source using a pre-aligned GRIN lens array with refractive beam correction,” Proc. SPIE 6876, 687602 (2008). [CrossRef]
  17. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am 66, 1145–1150 (1976). [CrossRef]
  18. J. Endriz, M. Vakili, G. Browder, M. De Vito, J. Haden, G. Harnagel, W. Plano, M. Sakamoto, D. Welch, S. Willing, D. Worland, and H. Yao, “High power diode laser arrays,” IEEE J. Quantum Electron. 28, 952–965 (1992). [CrossRef]
  19. G. Hollemann, B. Braun, F. Dorsch, P. Hennig, P. Heist, U. Krause, U. Kutschki, and H. Voelckel, “RGB lasers for laser projection displays,” Proc. SPIE 3954, 140–151 (2000). [CrossRef]
  20. A. Nebel and R. E. Wallenstein, “Concepts and performance of solid state RGB laser sources for large-frame laser projection displays,” Proc. SPIE 3954, 163–166 (2000). [CrossRef]
  21. J. Gollier, M. H. Hu, D. Ricketts, D. Loeber, V. Bhatia, and D. Pikula, “Multimode DBR laser operation for frequency doubled green lasers in projection displays,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol. 39, pp. 2081–2083.
  22. V. Bhatia, S. J. Gregorski, D. Pikula, S. C. Chaparala, D. A. S. Loeber, J. Gollier, Y. Ozeki, Y. Hata, K. Shibatani, F. Nagai, Y. Nakabayashi, N. Mitsugi, and S. Nakano, “63.2: Efficient and compact green laser incorporating adaptive optics for wide operating temperature range,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol. 39, pp. 962–965.
  23. J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78, 144–146 (2001). [CrossRef]
  24. Z. D. Gao, S. N. Zhu, S.-Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett. 89, 181101 (2006). [CrossRef]
  25. F. L. Williams, D. F. Elkins, J. P. Anderegg, B. D. Winkler, R. R. Christensen, C. C. Farmer, and C. L. Simmons, “Multiwatt high-efficiency CW single-mode visible lasers for ultrahigh-resolution displays,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference(Optical Society of America, 2009), paper PThA2.
  26. H. Soda, K.-I. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979). [CrossRef]
  27. J. V. Michael Bove and W. Sierra, “P-125: Personal projection, or how to put a large screen in a small device,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2003), Vol. 34, pp. 708–711.
  28. G. Duggan, D. A. Barrow, T. Calvert, M. Maute, V. Hung, B. McGarvey, J. D. Lambkin, and T. Wipiejewski, “Red vertical cavity surface emitting lasers (VCSELs) for consumer applications,” Proc. SPIE 6908, 69080G (2008). [CrossRef]
  29. S. Hallstein, G. P. Carey, R. Carico, R. Dato, J. J. Dudley, A. M. Earman, M. J. Finander, G. Giaretta, J. Green, H. J. Hofler, F. Hu, M. Jansen, C. P. Kocat, S. Lim, J. Krueger, A. Mooradian, G. Niven, Y. Okuno, F. G. Patterson, A. Tandon, and A. Umbrasas, “RGB laser light sources for projection displays,” in 2007 IEEE LEOS Annual Meeting Conference Proceedings, Vols. 1 and 2 (IEEE, 2007), pp. 254–255.
  30. M. Dawson, J. E. Hastie, S. Calvez, N. Laurand, D. Burns, and A. J. Kemp, “Semiconductor disk lasers: recent developments in bulk and micro-lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2009), paper ME1.
  31. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Späth, “8 W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003). [CrossRef]
  32. G. B. Kim, J.-Y. Kim, J. Lee, J. Yoo, K.-S. Kim, S.-M. Lee, S. Cho, S.-J. Lim, T. Kim, and Y. Park, “End-pumped green and blue vertical external cavity surface emitting laser devices,” Appl. Phys. Lett. 89, 181106 (2006). [CrossRef]
  33. U. Steegmuller, M. Kuhnelt, H. Unold, T. Schwarz, R. Schulz, S. Illek, I. Pietzonka, H. Lindberg, M. Schmitt, and U. Strauss, “Green laser modules to fit laser projection out of your pocket,” Proc. SPIE 6871, 687117 (2008). [CrossRef]
  34. U. Steegmueller, M. Kuehnelt, H. Unold, T. Schwarz, R. Schulz, and F. Singer, “Late-news paper: RGB laser for mobile projection devices,” in SID Symposium Digest of Technical Papers(Society for Information Display, 2007), Vol. 38, pp. 16–18.
  35. S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev. 3, 407–434(2009). [CrossRef]
  36. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, 75–85 (2004). [CrossRef]
  37. J. D. Mollon, “The origins of modern color science,” in The Science of Color, 2nd ed., S.K. Shevell, ed. (Elsevier, 2003).
  38. Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W.-K. Choi, J.-H. Lee, J.-W. Kim, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Proc. SPIE 5721, 14–22 (2005). [CrossRef]
  39. Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A, Phys. 126, 218–226 (2006). [CrossRef]
  40. M. Ebner, “Color reproduction,” in Color Constancy (Wiley, 2007).
  41. J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008). [CrossRef]
  42. A. D. Broadbent, “A critical review of the development of the CIE1931 RGB color-matching functions,” Color Res. Appl. 29, 267–272 (2004). [CrossRef]
  43. S. Wen, “Design of relative primary luminances for four-primary displays,” Displays 26, 171–176 (2005). [CrossRef]
  44. T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Expanded color gamut reproduced by six-primary projection display,” Proc. SPIE 3954, 130–137 (2000). [CrossRef]
  45. S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, “10.2: wide gamut, high brightness multiple primaries single panel projection displays,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2003), Vol. 34, pp. 118–121.
  46. M. Ou-Yang and S.-W. Huang, “Design considerations between color gamut and brightness for multi-primary color displays,” J. Display Technol. 3, 71–82 (2007). [CrossRef]
  47. Y. Cheng, X. Liu, and H. Li, “A color temperature adjustment method for multiprimary displays using nonlinear programming,” Color Res. Appl. 34, 201–204 (2009). [CrossRef]
  48. F. E. Doany, R. N. Singh, A. E. Rosenbluth, and G. L.-T. Chiu, “Projection display throughput: efficiency of optical transmission and light-source collection,” IBM J. Res. Dev. 42, 387–399 (1998). [CrossRef]
  49. E. H. Stupp and M. S. Brennesholtz, Projection Displays, Wiley–SID Series in Display Technology (Wiley, 1998).
  50. G. C. de Wit, “Contrast budget of head-mounted displays,” Opt. Eng. 41, 2419–2426 (2002). [CrossRef]
  51. H. Urey, N. Nestorovic, B. Ng, and A. Gross, “Optics designs and system MTF for laser scanning displays,” Proc. SPIE 3689, 238–248 (1999). [CrossRef]
  52. M. H. Niemz, “Laser-tissue interactions fundamentals and applications,” in Biological and Medical Physics, Biomedical Engineering, 3rd ed. (Springer , 2003).
  53. D. H. Sliney, J. Mellerio, V.-P. Gabel, and K. Schulmeister, “What is the meaning of threshold in laser injury experiments? Implications for human exposure limits,” Health Phys. 82, 335–347 (2002). [CrossRef]
  54. M. A. Mainster, “Blinded by the light—not!,” Arch. Ophthalmol. 117, 1547–1548 (1999).
  55. M. A. Mainster, B. E. Stuck, and J. Brown, “Assessment of alleged retinal laser injuries,” Arch. Ophthalmol. 122, 1210–1217 (2004). [CrossRef]
  56. International Commission on Non-Ionizing Radiation Protection, “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000). [CrossRef]
  57. D. A. Corder, J. B. O’Hagan, and J. R. Tyrer, “Safety assessments of visible scanned laser beams,” J. Radiol. Prot. 17, 231–238 (1997). [CrossRef]
  58. J. A. Agostinelli, “Laser projector having silhouette blanking for objects in the output light path,” U.S. patent 6,984,039 (10 January 2006).
  59. R. Henderson and K. Schulmeister, Laser Safety (Taylor & Francis, 2004).
  60. K. Bylund, D. H. Sliney, and M. Beard, “Comparative evaluation of ocular hazards from projectors—laser and lamp projectors,” in International Laser Safety Conference (ILSC) 2009 (Laser Institute of America, 2009), paper 1304.
  61. H.-D. Reidenbach, “Laser Safety,” Springer Handbook of Lasers and Optics, 1st ed. (Springer Science+Business Media, 2007).
  62. G. D. Costa and J. Ferrari, “Anisotropic speckle patterns in the light scattered by rough cylindrical surfaces,” Appl. Opt. 36, 5231–5237 (1997). [CrossRef]
  63. B. B. Gorbatenko, V. P. Ryabukho, and L. A. Maksimova, “Reconstructing an object image using the laser speckle pattern of the diffraction field,” Tech. Phys. Lett. 30, 741–743 (2004). [CrossRef]
  64. D. Yu, M. Stern, and J. Katz, “Speckle noise in laser bar-code-scanner systems,” Appl. Opt. 35, 3687–3694 (1996). [CrossRef]
  65. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998). [CrossRef]
  66. W. Liu and C. Zhou, “Femtosecond laser speckles,” Appl. Opt. 44, 6506–6510 (2005). [CrossRef]
  67. J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena (Springer-Verlag, 1975).
  68. F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316–1321 (2009). [CrossRef]
  69. T. W. Ng, “Optical distance sensing using digital speckle shearing interferometry,” Opt. Lasers Eng. 26, 449–460 (1997). [CrossRef]
  70. T. W. Ng, “The optical mouse as a two-dimensional displacement sensor,” Sens. Actuators A, Phys. 107, 21–25 (2003). [CrossRef]
  71. J. D. Briers, “Laser speckle contrast imaging for measuring blood flow,” Opt. Appl. 37, 139–152 (2007). [CrossRef]
  72. T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996). [CrossRef]
  73. I. Peled, M. Zenou, B. Greenberg, and Z. Kotler, “MEMS based speckle reduction obtained by angle diversity for fast imaging,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD44.
  74. A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008). [CrossRef]
  75. F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt. 48, 3742–3749 (2009). [CrossRef]
  76. M. N. Akram, V. Kartashov, K. Wang, G. Ouyang, and X. Chen, “Laser speckle reduction using a dynamic polymer-based diffraction grating spatial phase modulator,” Proc. SPIE 7382, 73822H (2009). [CrossRef]
  77. H. Urey, “Diffractive exit-pupil expander for display applications,” Appl. Opt. 40, 5840–5851 (2001). [CrossRef]
  78. S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on rear projection screen using the rotating screen system,” J. Display Technol. 2, 79–84 (2006). [CrossRef]
  79. F. Riechert, G. Craggs, Y. Meuret, B. V. Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low-speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798(2009). [CrossRef]
  80. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002). [CrossRef]
  81. F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316–1321 (2009). [CrossRef]
  82. D. L. Shealy, “Historical perspective of laser beam shaping,” Proc. SPIE 4770, 28–47 (2002). [CrossRef]
  83. F. M. Dickey, L. S. Weichman, and R. N. Shagam, “Laser beam shaping techniques,” Proc. SPIE 4065, 338–348 (2000). [CrossRef]
  84. P. Nussbaum and H. P. Herzig, “Refractive and diffractive elements for micro-optical systems,” Proc. SPIE 3226, 32–43(1997). [CrossRef]
  85. W. Jiang and D. L. Shealy, “Development and testing of a refractive laser beam shaping system,” Proc. SPIE 4095, 165–175 (2000). [CrossRef]
  86. C. M. Jefferson and J. A. Hoffnagle, “An achromatic refractive laser beam reshaper,” Proc. SPIE 5175, 1–11 (2003). [CrossRef]
  87. D. L. Shealy and S.-H. Chao, “Geometric optics-based design of laser beam shapers,” Opt. Eng. 42, 3123–3138 (2003). [CrossRef]
  88. D. L. Shealy and S.-H. Chao, “Design of GRIN laser beam shaping system,” Proc. SPIE 5525, 138–147 (2004). [CrossRef]
  89. S. Jutamulia, H. Zhai, and G. Mu, “Beam correction optics for laser diodes,” Proc. SPIE 6024, 60240I (2006). [CrossRef]
  90. S. N. Toma, A. Alexandrescu, D. Apostol, V. Nascov, and D. Cojoc, “Gaussian to rectangular laser beam shaping using diffractive optical elements,” Proc. SPIE 5972, 59721G (2005). [CrossRef]
  91. G. M. Morris, D. H. Raguin, M. Rossi, and P. M. Emmel, “Diffractive optics technology for projection displays,” Proc. SPIE 2650, 112–119 (1996). [CrossRef]
  92. F. Li, Z. Lu, H. Li, and J. Liao, “Nearly diffraction-limited size flat-top laser beam shaper,” Proc. SPIE 4095, 189–195 (2000). [CrossRef]
  93. S. C. Holswade and F. M. Dickey, “Gaussian laser beam shaping: test and evaluation,” Proc. SPIE 2863, 237–245 (1996). [CrossRef]
  94. S. Menn, S. A. Cornelissen, and P. A. Bierden, “Advances in MEMS deformable mirror technology for laser beam shaping,” Proc. SPIE 6663, 66630M (2007). [CrossRef]
  95. S. Avino, B. Potsaid, and J. T. Wen, “Super-Gaussian laser beam shaping using deformable mirrors and intrinsic beam quality metrics,” Proc. SPIE 7266, 72660P (2008). [CrossRef]
  96. B. G. Henderson and J. D. Mansell, “Laser beam shaping with membrane deformable mirrors,” Proc. SPIE 7093, 70930I(2008). [CrossRef]
  97. T. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577(2005). [CrossRef]
  98. T. Y. Fan and A. Sanchez, “Coherent (phased array) and wavelength (spectral) beam combining compared (invited paper),” Proc. SPIE 5709, 157–164 (2005). [CrossRef]
  99. S. C. Tidwell, S. Roman, D. Jander, and D. D. Lowenthal, “Spectral beam combining of diode laser bars achieve efficient near diffraction limited output power,” Proc. SPIE 4973, 42–46 (2003). [CrossRef]
  100. E. J. Bochove, “Spectral beam combining of fiber lasers: tolerances, lens design, and microlens array inclusion,” Proc. SPIE 4629, 31–38 (2002). [CrossRef]
  101. B. J. Skutnik and H. Park, “Fiber coupling of laser diode arrays for high brightness: cladding considerations,” Proc. SPIE 4629, 86–93 (2002). [CrossRef]
  102. P. Y. Wang, A. Gheen, and Z. Wang, “Beam shaping technology for laser diode arrays,” Proc. SPIE 4770, 131–135 (2002). [CrossRef]
  103. L. Li, “Coupling of high-power diode laser arrays and fibers,” Proc. SPIE 4225, 201–203 (2000). [CrossRef]
  104. C. Zhou, Y. Liu, W. Xie, and C. Du, “Analysis and design of fiber-coupled high-power laser diode array,” Proc. SPIE 5177, 140–145 (2003). [CrossRef]
  105. N. P. Ostrom, M. Gall, and B. O. Faircloth, “Development of high power high brightness fiber coupled diode laser systems,” Proc. SPIE 6104, 61040N (2006). [CrossRef]
  106. S. Heinemann, B. Regaard, T. Schmidt, and B. Lewis, “High-brightness fiber-coupled single emitter arrays,” Proc. SPIE 7198, 71980Q (2009). [CrossRef]
  107. T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng. 42, 3084–3085 (2003). [CrossRef]
  108. Q. Deng, C. Du, C. Wang, C. Zhou, X. Dong, Y. Liu, and T. Zhou, “Microlens array for stacked laser diode beam collimation,” Proc. SPIE 5636, 666–670 (2005). [CrossRef]
  109. Q. Tang, “Refractive microlens array integration with linear high-power semiconductor laser array,” Proc. SPIE 3879, 176–180 (1999). [CrossRef]
  110. X. Jiang and D. Liu, “The main factors which affect coupling efficiency of high-power semiconductor laser array and selfoc lens array,” Proc. SPIE 6823, 682308 (2007). [CrossRef]
  111. A. F. Kurtz, “Design of a laser printer using a laser array and beam homogenizer,” Proc. SPIE 4095, 147–153 (2000). [CrossRef]
  112. E. T. Kana, S. Bollanti, P. D. Lazzaro, and D. Murra, “Beam homogenization: theory, modeling, and application to an excimer laser beam,” Proc. SPIE 5777, 716–724 (2005). [CrossRef]
  113. A. Tuantranont, V. M. Bright, W. Zhang, J. Zhang, and Y. C. Lee, “Self-aligned assembly of microlens arrays with micromirrors,” Proc. SPIE 3878, 90–100 (1999). [CrossRef]
  114. B. V. Giel, Y. Meuret, and H. Thienpont, “Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources,” Opt. Eng. 46, 043001 (2007). [CrossRef]
  115. F. C. Wippermann, P. Dannberg, A. Bräuer, and S. Sinzinger, “Improved homogenization of fly’s eye condenser setups under coherent illumination using chirped microlens arrays,” Proc. SPIE 6466, 64660R (2007). [CrossRef]
  116. M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer: from theory to application,” Proc. SPIE 6663, 666302 (2007). [CrossRef]
  117. T. Zuo, T. Chen, and C. Li, “Design of fly’s eye homogenizer for excimer laser micromachining,” Proc. SPIE 4223, 40–44 (2000). [CrossRef]
  118. A. Akatay, A. Waddie, H. Suyal, M. Taghizadeh, and H. Urey, “Comparative performance analysis of 100% fill-factor microlens arrays fabricated by various methods,” Proc. SPIE 6185, 61850C (2006). [CrossRef]
  119. C. Du, B. Chen, C. Qiu, L. Bai, Q. Deng, C. Zhou, and L. Zhou, “Microlens array and application systems,” Proc. SPIE 4231, 153–157 (2000). [CrossRef]
  120. H. Urey and K. D. Powell, “Microlens-array-based exit-pupil expander for full-color displays,” Appl. Opt. 44, 4930–4936(2005). [CrossRef]
  121. E. Erden, V. C. Kishore, H. Ürey, H. Baghsiahi, E. Willman, S. E. Day, D. R. Selviah, F. A. Fernandez, and P. Surman, “Laser scanning based autostereoscopic 3D display with pupil tracking,” in LEOS Annual Meeting Conference Proceedings, (IEEE, 2009), pp. 10–11.
  122. V. C. Kishore, E. Erden, H. Urey, H. Baghsiahi, E. Willman, S. E. Day, D. R. Selviah, F. Aníbal Fernández, and P. Surman, “Laser scanning 3D display with dynamic exit pupil,” in Proceedings of the 29th International Display Research Conference (Society for Information Display, 2009), pp. 492–495.
  123. J. Popelek and Y. Li, “X-cube: an eight-port beamsplitting device,” Proc. SPIE 4114, 122–128 (2000). [CrossRef]
  124. O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” Proc. SPIE 6876, 68760B (2008). [CrossRef]
  125. A. Bayer, J. Meinschien, T. Mitra, and M. Brodner, “Beam shaping of line generators based on high power diode lasers to achieve high intensity and uniformity levels,” Proc. SPIE 7062, 70620X (2008). [CrossRef]
  126. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  127. C. E. Baker, “Laser display technology,” IEEE Spectrum 5, 39–50 (1968). [CrossRef]
  128. J. P. Kelly, S. Turner, H. L. Pryor, E. S. Viirre, E. J. Seibelb, and T. A. Furness, III, “Vision with a scanning laser display: comparison of flicker sensitivity to a CRT,” Displays 22, 169–175 (2001). [CrossRef]
  129. N. Eguchi, “GxL Laser Dream Theater at the Aichi Expo (equivalent to 2005 inch TV),” in IDW ‘06: Proceedings of the 13th International Display Workshops, Vols. 1–3 (2006), pp. 9–12.
  130. M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in The Fifteenth IEEE International Conference On Micro Electro Mechanical Systems (IEEE, 2002), pp. 568–573.
  131. S. K.Yun, “Spatial optical modulator (SOM): Samsung’s light modulator for next-generation laser displays,” J. Soc. Inf. Display 15, 321–333 (2007). [CrossRef]
  132. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992). [CrossRef]
  133. J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, “Overview and applications of grating-light-valve-based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004). [CrossRef]
  134. H. Tamada, “Invited paper: blazed GxLP™ light modulators for laser projectors,” J. Soc. Inf. Disp. 15, 817–823 (2007). [CrossRef]
  135. D. T. Amm and R. W. Corrigan, “Optical performance of the Grating Light Valve technology,” Proc. SPIE 3634, 71–78(1999). [CrossRef]
  136. X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, “Tunable blazed gratings,” J. Microelectromech. Syst. 15, 597–604 (2006). [CrossRef]
  137. H. Kikuchi, S. Hashimoto, S. Tajiri, T. Hayashi, Y. Sugawara, M. Oka, Y. Akiyama, A. Nakamura, and N. Eguchi, “56.1: high-frame-rate, high-contrast grating light valve laser projection display,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol. 39, pp. 846–849.
  138. J. C. Brazas and M. W. Kowarz, “High-resolution laser-projection display system using a grating electromechanical system (GEMS),” Proc. SPIE 5348, 65–75 (2004). [CrossRef]
  139. S. Yun, J. Song, I. Yeo, Y. Choi, V. Yurlov, S. An, H. Park, H. Yang, Y. Lee, K. Han, I. Shyshkin, A. Lapchuk, K. Oh, S. Ryu, J. Jang, C. Park, C. Kim, S. Kim, E. Kim, K. Woo, J. Yang, E. Kim, J. Kim, S. Byun, S. Lee, O. Lim, J. Cheong, Y. Hwang, G. Byun, J. Kyoung, S. Yoon, J. Lee, T. Lee, S. Hong, Y. Hong, D. Park, J. Kang, W. Shin, S. Lee, S. Oh, B. Song, H. Kim, C. Koh, Y. Ryu, H. Lee, and Y. Baek, “Spatial optical modulator (SOM): high-density diffractive laser projection display,” Proc. SPIE 6487, 648710 (2007). [CrossRef]
  140. V. Yurlov, A. Lapchuk, S. K. Yun, J. Song, K. Lee, I. Yeo, and S. An, “A study of image contrast restriction in displays using diffractive spatial light modulators,” Displays 31, 15–24(2010). [CrossRef]
  141. S. Jiyong, H. Shanglian, Z. Jie, Z. Zhihai, and Z. Yong, “Two-dimensional grating light modulator for projection display,” Appl. Opt. 47, 2813–2820 (2008). [CrossRef]
  142. G. F. Marshall, G. A. Rynkowski, and M. Ketabchi, “Polygonal scanners for TV and HDTV laser projectors: spatial and temporal tolerances versus resolution,” Proc. SPIE 1988, 223–241 (1993). [CrossRef]
  143. G. F. Marshall and J. I. Montagu, “Advances in oscillatory optical scanners,” Proc. SPIE 2383, 440 (1995). [CrossRef]
  144. G. F. Marshall, “Stationary ghost images outside the image format of the scanned field image plane,” Proc. SPIE 4773, 132–140 (2002). [CrossRef]
  145. A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15, 786–794 (2006). [CrossRef]
  146. H.-M. Jeong, Y.-H. Park, Y.-C. Cho, J. Hwang, S.-M. Chang, S.-J. Kang, H.-K. Jeong, J. O. Kim, and J.-H. Lee, “Slow scanning electromagnetic scanner for laser display,” J. Micro/Nanolith. MEMS and MOEMS 7, 043003 (2008). [CrossRef]
  147. B. S. Gurevich, “Laser projection displays based on acoustooptic devices,” J. Opt. Technol. 70, 500–503(2003).
  148. J. D. Beasley, “Electrooptic laser scanner for TV projection display,” Appl. Opt. 10, 1934–1936 (1971). [CrossRef]
  149. W. H. Watson and A. Korpel, “Equalization of acoustooptic deflection cells in a laser color TV system,” Appl. Opt. 9, 1176–1179 (1970). [CrossRef]
  150. A. Fukumoto, M. Kawabuchi, and H. Hayami, “Raster-scanned laser display system using two-dimensional TeO2 acoustooptic light deflector,” Electron. Commun. Jpn. 58, 115–123 (1975).
  151. A. N. Drozhzhin, L. A. Kosovskii, L. N. Mikhailova, and K. I. Chamorovskii, “Laser television display unit,” Sov. J. Quantum Electron. 5, 1287–1288 (1975). [CrossRef]
  152. Y. M. Hwang, J.-H. Lee, Y. Park, J. Park, S. Cha, and Y. Kim, “200  in. full-color laser projection display,” Proc. SPIE 3296, 116–125 (1998). [CrossRef]
  153. J.-H. Lee, Y.-K. Mun, S.-W. Do, Y.-C. Ko, D.-H. Kong, B.-S. Choi, J.-M. Kim, C.-W. Hong, and D.-Y. Jeon, “Laser TV for home theater,” Proc. SPIE 4657, 138–145 (2002). [CrossRef]
  154. Microvision, “http://microvision.com/,” (accessed 4 December 2009).
  155. G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Display Technol. 4, 314–318 (2008). [CrossRef]
  156. Mitsubishi Electric, “Mitsubishi Digital Electronics America introduces new category of large-format televisions with groundbreaking laser technology,” press release of 7 January (Mitsubishi Electric, 2008), pp. 1–2.
  157. Z. Xu and Y. Bi, “Large laser projection displays utilizing all-solid-state RGB lasers,” Proc. SPIE 5632, 115–122 (2005). [CrossRef]
  158. R. Ryf, G. Chen, N. Basavanhally, M. Dinu, A. Duque, Y. L. Low, J. M. Wiesenfeld, Y. Shapiro, and R. Giles, “The Alcatel-Lucent microprojector: what every cell phone needs,” Bell Labs Tech. J. 14, 99–112 (2009). [CrossRef]
  159. E. Buckley, “70.2: Invited paper: holographic laser projection technology,” in SID Symposium Digest of Technical Papers(Society for Information Display, 2008), Vol. 39, pp. 1074–1079.
  160. E. Buckley, R. Isele, and D. Stindt, “14.2 novel human-machine interface (HMI) design enabled by holographic laser projection,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2009), pp. 172–177.
  161. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005). [CrossRef]
  162. Stephen A. Benton and V. M. Bove, Jr., Holographic Imaging (Wiley , 2008).
  163. K. Keller, A. State, and H. Fuchs, “Head mounted displays for medical use,” J. Display Technol. 4, 468–472 (2008). [CrossRef]
  164. T. H. Harding, C. E. Rash, and S. J. Dennis, “Evaluation of Microvision SD2500 scanning laser display,” Proc. SPIE 6224, 62240R (2006). [CrossRef]
  165. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Display Technol. 2, 199–216 (2006). [CrossRef]
  166. B. T. Schowengerdt, E. J. Seibel, N. L. Silverman, and T. A. Furness III, “Stereoscopic retinal scanning laser display with integrated focus cues for ocular accommodation,” Proc. SPIE 5291, 366–376 (2004). [CrossRef]
  167. P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007). [CrossRef]
  168. W. S. C. Chang, Principles of Lasers and Optics (Cambridge U. Press, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited