OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4851–4858

Measurement of signal intensity depth profiles in rat brains with cardiac arrest maintaining primary temperature by wide-field optical coherence tomography

Manabu Sato, Daisuke Nomura, Takashi Tsunenari, and Izumi Nishidate  »View Author Affiliations


Applied Optics, Vol. 49, Issue 26, pp. 4851-4858 (2010)
http://dx.doi.org/10.1364/AO.49.004851


View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have already reported that after an injection for euthanasia, the signal intensity of optical coherence tomography (OCT) images are 2.7 times increased before cardiac arrest (CA) using OCT and rat brains without temperature control to show the potential of OCT to monitor tissue viability in brains [ Appl. Opt. 48, 4354 (2009)]. In this paper, we similarly measured maintaining the primary temperature of rat brains. It was confirmed that when maintaining the primary temperature, the time courses of the ratios of signal intensity (RSIs) were almost the same as those without temperature control. RSIs after CA varied from 1.6 to 4.5 and depended on positions measured in tissues. These results mean that the OCT technique has clinical potential for applications to monitor or diagnose a focal degraded area, such as cerebral infarctions due to focal ischemia in brains.

© 2010 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 23, 2010
Revised Manuscript: June 14, 2010
Manuscript Accepted: July 25, 2010
Published: September 2, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Manabu Sato, Daisuke Nomura, Takashi Tsunenari, and Izumi Nishidate, "Measurement of signal intensity depth profiles in rat brains with cardiac arrest maintaining primary temperature by wide-field optical coherence tomography," Appl. Opt. 49, 4851-4858 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-26-4851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. B. Bouma and J. Tearney, Eds., Handbook of Optical Coherence Tomography (Dekker, 2002).
  3. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004). [CrossRef] [PubMed]
  4. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004). [CrossRef]
  5. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004). [PubMed]
  6. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007). [CrossRef]
  7. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990). [CrossRef] [PubMed]
  8. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002). [CrossRef]
  9. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003). [CrossRef] [PubMed]
  10. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31, 3459–3461 (2006). [CrossRef] [PubMed]
  11. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006). [CrossRef] [PubMed]
  12. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008). [CrossRef] [PubMed]
  13. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009). [CrossRef]
  14. M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009). [CrossRef] [PubMed]
  15. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).
  16. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959). [CrossRef] [PubMed]
  17. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064(2002). [CrossRef] [PubMed]
  18. S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006). [CrossRef] [PubMed]
  19. S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077(2000). [CrossRef] [PubMed]
  20. F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008). [CrossRef]
  21. K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994). [CrossRef]
  22. F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004). [CrossRef] [PubMed]
  23. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998). [CrossRef]
  24. D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited