OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4859–4865

Design and fabrication of a 200 GHz Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with optimized photonic crystal reflectors

Yaocheng Shi, Xin Fu, and Daoxin Dai  »View Author Affiliations

Applied Optics, Vol. 49, Issue 26, pp. 4859-4865 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact Si-nanowire-based reflective arrayed-waveguide grating (AWG) for dense wavelength-division multiplexing is proposed. At the end of each waveguide in the array, there is an individual photonic crystal (PhC) reflector, which makes the AWG layout design very flexible. All the PhC reflectors are with the same design. With such a design, the total size of the AWG (de)multiplexer is reduced by more than a half. The reflection efficiency of the used PhC reflectors is enhanced by optimizing the taper between the arrayed waveguides and the PhC reflector. A 200 GHz AWG (de)multiplexer is designed and fabricated as an example. The total size is only about 193 μm × 168 μm .

© 2010 Optical Society of America

OCIS Codes
(230.5298) Optical devices : Photonic crystals
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: April 26, 2010
Revised Manuscript: July 26, 2010
Manuscript Accepted: August 2, 2010
Published: September 2, 2010

Yaocheng Shi, Xin Fu, and Daoxin Dai, "Design and fabrication of a 200 GHz Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with optimized photonic crystal reflectors," Appl. Opt. 49, 4859-4865 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996). [CrossRef]
  2. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005). [CrossRef]
  3. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006). [CrossRef]
  4. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14, 664–669 (2006). [CrossRef] [PubMed]
  5. D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photonics Technol. Lett. 18, 2017–2019 (2006). [CrossRef]
  6. D. Dai and S. He, “Ultra-small overlapped arrayed-waveguide grating based on Si nanowire waveguides for dense wavelength division demultiplexing,” IEEE J. Sel. Top. Quantum Electron. 12, 1301–1305 (2006). [CrossRef]
  7. D. Dai and S. He, “Novel ultracompact Si-nanowire-based arrayed-waveguide grating with microbends,” Opt. Express 14, 5260–5265 (2006). [CrossRef] [PubMed]
  8. L. Grave de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photonics Technol. Lett. 15, 1398–1340 (2003). [CrossRef]
  9. J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarisation independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32, 1769–1770 (1996). [CrossRef]
  10. A. A. Bernussi, L. Grave de Peralta, V. Gorbounov, J. A. Linn, S. Frisbie, R. Gale, and H. Temkin, “Mirror quality and the performance of reflective arrayed-waveguide grating multiplexers,” J. Lightwave Technol. 22, 1828–1832 (2004). [CrossRef]
  11. Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-wave-guide grating circuit as optical splitter router,” Electron. Lett. 31, 726–727 (1995). [CrossRef]
  12. C. Bayer and M. Straub, “Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap,” Appl. Opt. 48, 5050–5054 (2009). [CrossRef] [PubMed]
  13. H. J. Yu, J. Z. Yu, Y. Yu, Z. C. Fan, and S. W. Chen, “Design, fabrication, and characterization of an ultracompact low-loss photonic crystal corner mirror,” IEEE J. Quantum Electron. 43, 876–883 (2007). [CrossRef]
  14. Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19, 825–827 (2007). [CrossRef]
  15. T. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photonics Technol. Lett. 20, 309–311 (2008). [CrossRef]
  16. C. Dragone, “Efficient reflective multiplexer arrangement,” U.S. patent 5,450,511 (12 September 1995).
  17. D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar lightwave circuits based on three different kinds of nanophotonic waveguides,” Appl. Opt. 46, 1126–1131 (2007). [CrossRef] [PubMed]
  18. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006). [CrossRef]
  19. D. Dai, L. Liu, and S. He, “Three-dimensional hybrid method for efficient and accurate simulation of AWG demultiplexers,” Opt. Commun. 270, 195–202 (2007). [CrossRef]
  20. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002). [CrossRef]
  21. D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 2428–2433 (2006). [CrossRef]
  22. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304(2003). [CrossRef] [PubMed]
  23. D. Wang, G. Jin, Y. Yan, and M. Wu, “Aberration theory of arrayed waveguide grating,” J. Lightwave Technol. 19, 279–284 (2001). [CrossRef]
  24. W. Bogaerts, S. K. Selvaraja, and P. Dumon, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010). [CrossRef]
  25. D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,”IEEE Photonics Technol. Lett. 20, 1615–1617 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited