OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4866–4873

Wavelength-compensated time-sequential multiplexed color joint transform correlator

P. García-Martínez, J. L. Martínez, M. M. Sánchez-López, and I. Moreno  »View Author Affiliations


Applied Optics, Vol. 49, Issue 26, pp. 4866-4873 (2010)
http://dx.doi.org/10.1364/AO.49.004866


View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a wavelength-compensated three-channel (RGB) joint transform correlator (JTC) for color pattern recognition using a ferroelectric liquid-crystal spatial light modulator (SLM) operating in binary pure phase modulation. We apply a previously reported time-multiplexing technique useful in creating wavelength-compensated diffraction patterns, based on the synchronization of properly scaled diffraction masks with the input wavelength selection obtained by applying a rotating RGB color-filter wheel to an Ar–Kr laser. The application of this technique to a JTC architecture permits real-time color object detection. In order to achieve a high light efficiency for the correlation process, we combine the design of zero-order joint power spectra in all color channels with the selection of a certain polarization configuration of the SLM, producing a broadband phase-only modulation. Excellent experimental results demonstrating color-object detection are provided.

© 2010 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.4550) Image processing : Correlators
(100.5010) Image processing : Pattern recognition
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: May 4, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: August 6, 2010
Published: September 2, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
P. García-Martínez, J. L. Martínez, M. M. Sánchez-López, and I. Moreno, "Wavelength-compensated time-sequential multiplexed color joint transform correlator," Appl. Opt. 49, 4866-4873 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-26-4866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. González and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).
  2. E. Valencia and M. S. Millán, “Colour in digital images captured by camera: framework for colorimetric image analysis and applications,” Opt. Pura Apl. 40, 253–265 (2007).
  3. M. S. Millán, M. J. Yzuel, J. Campos, and C. Ferreira, “Different strategies in optical pattern recognition of polychromatic images,” Appl. Opt. 31, 2560–2567 (1992). [CrossRef] [PubMed]
  4. D. Mendlovic, P. García-Martínez, J. Garcia, and C. Ferreira, “Color encoding for polychromatic single channel optical pattern recognition,” Appl. Opt. 34, 7538–7544 (1995). [CrossRef] [PubMed]
  5. P. García-Martínez, J. Otón, J. J. Vallés, and H. H. Arsenault, “Nonlinear pattern recognition correlators based on color-encoding single channel systems,” Appl. Opt. 43, 425–432(2004). [CrossRef] [PubMed]
  6. I. Moreno, V. Kober, V. Lashin, J. Campos, L. P. Yaroslavsky, and M. J. Yzuel, “Color pattern recognition with circular component whitening,” Opt. Lett. 21, 498–500 (1996). [CrossRef] [PubMed]
  7. A. Fares, P. García-Martínez, C. Ferreira, M. Hamdi, and A. Bouzid, “Multichannel chromatic transformations for nonlinear color pattern recognition,” Opt. Commun. 203, 255–261(2002). [CrossRef]
  8. C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  9. F. T. S. Yu and Y. S. Cheng, “White-light joint-transform correlator,” Opt. Lett. 15, 192–194 (1990). [CrossRef] [PubMed]
  10. Y. S. Cheng, “Analysis of a white-light joint-transform correlator with application to color-object detection,” Opt. Commun. 99, 252–263 (1993). [CrossRef]
  11. P. Andrés and V. Climent, “Chromatic compensation of light diffraction: Achromatic diffraction based application,” Proc. SPIE CR74, 11–40 (1999).
  12. M. Deutsch, J. García, and D. Mendlovic, “Multichannel single-output color pattern recognition by use of a joint-transform correlator,” Appl. Opt. 35, 6976–6982 (1996). [CrossRef] [PubMed]
  13. M. S. Alam and C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlator,” Opt. Eng. 40, 2407–2413 (2001). [CrossRef]
  14. M.-L. Hsieh, K. Y. Hsu, and H. Zhai, “Color image recognition by use of a joint transform correlator of three liquid-crystal televisions,” Appl. Opt. 41, 1500–1504 (2002). [CrossRef] [PubMed]
  15. F. T. S. Yu, Z. Yang, and K. Pan, “Polychromatic target identification with a color liquid-crystal-TV based joint-transform correlator,” Appl. Opt. 33, 2170–2172 (1994). [CrossRef] [PubMed]
  16. G. Lu, Z. Zhang, S. Wu, and F. T. S. Yu, “Implementations of DC spectra-free joint transform correlator using phase-shifting techniques,” Appl. Opt. 36, 470–483 (1997). [CrossRef] [PubMed]
  17. C. Li, S. Yin, and F. T. S. Yu, “Nonzero-order joint transform correlator,” Opt. Eng. 37, 58–65 (1998). [CrossRef]
  18. A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc.—Rapid Pub. 3, 08012 (2008). [CrossRef]
  19. A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, “Achromatic diffractive lens written onto a liquid crystal display,” Opt. Lett. 31, 392–394 (2006). [CrossRef] [PubMed]
  20. M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103–9111 (2006). [CrossRef] [PubMed]
  21. J. L. Martínez, A. Martínez-García, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48, 911–918 (2009). [CrossRef] [PubMed]
  22. B. V. K. Vijaya Kumar and L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997–3006(1990). [CrossRef]
  23. A. B. Carlson, P. B. Crilly, and J. C. Rutledge, Communication Systems (McGraw–Hill, 2002).
  24. I. Moreno, J. Campos, M. J. Yzuel, and V. Kober, “Implementation of bipolar real-valued input scenes in a real-time optical correlator: Application to colour pattern recognition,” Opt. Eng. 37, 144–150 (1998). [CrossRef]
  25. J. Nicolás, C. Iemmi, J. Campos, and M. J. Yzuel, “Optical encoding of color three-dimensional correlation,” Opt. Commun. 209, 35–43 (2002). [CrossRef]
  26. A. Martínez-García, I. Moreno, M. M. Sánchez-López, and P. García-Martínez, “Operational modes of a ferroelectric LCoS modulator for displaying binary polarization, amplitude and phase diffraction gratings,” Appl. Opt. 48, 2903–2914(2009). [CrossRef] [PubMed]
  27. I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for optical switches,” IEEE Photonics Technol. Lett. 14, 801–803(2002). [CrossRef]
  28. T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Express 5, 271–278 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited